Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Biol Rep ; 51(1): 117, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227285

RESUMEN

BACKGROUND: Exposure to benzyl butyl phthalate (BBP) may induce disorders in the male reproductive system. However, the molecular mechanisms remain unknown. Here we investigated the effect of BBP on testosterone production and its molecular mechanisms. Furthermore, we also investigated the role of gomisin N (GN) from Schisandra chinensis (S. chinensis) in testosterone synthesis in TM3 Leydig cells. METHOD AND RESULTS: First, we examined the effects of BBP on expression levels of testosterone biosynthesis-related genes (StAR, CYP11α1, CYP17α1, 3ßHSD, and 17ßHSD) and attenuation-related genes (CYP1ß1, CYP19α1, and Srd5α1-3). Although testosterone biosynthesis-related genes did not change, attenuation-related genes such as CYP1ß1 and CYP19α1 were upregulated with ROS generation and testosterone level attenuation in the presence of 50 µM of BBP. However, the compound with the highest ROS and ONOO- scavenging activity from S. chinensis, GN, significantly reversed the expression of BBP-induced testosterone attenuation-related gene to normal levels. Subsequently, GN improved the testosterone production levels in TM3 Leydig cells. These events may be regulated by the antioxidant effect of GN. CONCLUSIONS: On conclusion, our study suggests, for the first time, that BBP impairs testosterone synthesis by the modulation of CYP1ß1 and CYP19α1 expression in TM3 cells; GN could potentially minimize the BBP-induced dysfunction of TM3 cells to produce testosterone by suppressing CYP19α1 expression.


Asunto(s)
Células Intersticiales del Testículo , Lignanos , Ácidos Ftálicos , Compuestos Policíclicos , Testosterona , Masculino , Humanos , Especies Reactivas de Oxígeno , Ciclooctanos
2.
Adv Funct Mater ; 30(31): 2003579, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32774203

RESUMEN

Vaccine coverage is severely limited in developing countries due to inefficient protection of vaccine functionality as well as lack of patient compliance to receive the additional booster doses. Thus, there is an urgent need to design a thermostable vaccine delivery platform that also enables release of the bolus after predetermined time. Here, the formation of injectable and light-activatable polybubbles for vaccine delivery is reported. In vitro studies show that polybubbles enable delayed burst release, irrespective of cargo types, namely small molecule and antigen. The extracorporeal activation of polybubbles is achieved by incorporating near-infrared (NIR)-sensitive gold nanorods (AuNRs). Interestingly, light-activatable polybubbles can be used for on-demand burst release of cargo. In vitro, ex vivo, and in vivo studies demonstrate successful activation of AuNR-loaded polybubbles. Overall, the light-activatable polybubble technology can be used for on-demand delivery of various therapeutics including small molecule drugs, immunologically relevant protein, peptide antigens, and nucleic acids.

3.
Nutr Res Pract ; 17(1): 1-12, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36777801

RESUMEN

BACKGROUND/OBJECTIVES: Male hypogonadism is a condition where the body does not produce enough testosterone and significantly impacts health. Age, obesity, genetics, and oxidative stress are some physiological factors that may contribute to testosterone deficiency. Previous studies have shown many pharmacological benefits of Schisandra chinensis (S. chinensis) Baillon as an anti-inflammatory and antioxidant. However, the molecular mechanism of attenuating hypogonadism is yet to be well established. This research was undertaken to study the effects of S. chinensis extract (SCE) on testosterone deficiency. MATERIALS/METHODS: S. chinensis fruit was pulverized and extracted using 60% aqueous ethanol. HPLC analysis was performed to analyze and quantify the lignans of the SCE. RESULTS: The 2,2-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays confirmed that the SCE and its major lignans (schisandrol A and gomisin N) inhibit oxidative stress. Effects of SCE analysis on the testosterone level under oxidative stress conditions revealed that both schisandrol A and gomisin N were able to recover the lowered testosterone levels. Through mRNA expression of TM3 Leydig cell, we observed that the SCE lignans were able to induce the enzymes involved in testosterone biosynthesis-related genes such as 3ß-HSD4 (P < 0.01 for SCE, and P < 0.001 for schisandrol A and gomisin N), 17ß-HSD3 (P < 0.001 for SCE, schisandrol A and gomisin N), and 17, 20-desmolase (P < 0.01 for schisandrol A, and P < 0.001 for SCE and gomisin N). CONCLUSIONS: These results support that SCE and its active components could be potential therapeutic agents for regulating and increasing testosterone production.

4.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467028

RESUMEN

The emergence of activatable magnetic resonance (MR) contrast agents has prompted significant interest in the detection of functional markers of diseases, resulting in the creation of a plethora of nanoprobes capable of detecting these biomarkers. These markers are commonly dysregulated in several chronic diseases, specifically select cancers and inflammatory diseases. Recently, the development of redox-sensitive nanoparticle-based contrast agents has gained momentum given advances in medicine linking several inflammatory diseases to redox imbalance. Researchers have pinpointed redox dysregulation as an opportunity to use activatable MR contrast agents to detect and stage several diseases as well as monitor the treatment of inflammatory diseases or conditions. These new classes of agents represent an advancement in the field of MR imaging as they elicit a response to stimuli, creating contrast while providing evidence of biomarker changes and commensurate disease state. Most redox-sensitive nanoparticle-based contrast agents are sensitive to reductive glutathione or oxidative reactive oxygen species. In this review, we will explore recent investigations into redox-activatable, nanoparticle-based MR contrast agent candidates.

5.
Pharmaceutics ; 14(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35056980

RESUMEN

Chronic interstitial inflammation and renal infiltration of activated immune cells play an integral role in hypertension. Lymphatics regulate inflammation through clearance of immune cells and excess interstitial fluid. Previously, we demonstrated increasing renal lymphangiogenesis prevents hypertension in mice. We hypothesized that targeted nanoparticle delivery of vascular endothelial growth factor-C (VEGF-C) to the kidney would induce renal lymphangiogenesis, lowering blood pressure in hypertensive mice. A kidney-targeting nanoparticle was loaded with a VEGF receptor-3-specific form of VEGF-C and injected into mice with angiotensin II-induced hypertension or LNAME-induced hypertension every 3 days. Nanoparticle-treated mice exhibited increased renal lymphatic vessel density and width compared to hypertensive mice injected with VEGF-C alone. Nanoparticle-treated mice exhibited decreased systolic blood pressure, decreased pro-inflammatory renal immune cells, and increased urinary fractional excretion of sodium. Our findings demonstrate that pharmacologically expanding renal lymphatics decreases blood pressure and is associated with favorable alterations in renal immune cells and increased sodium excretion.

6.
RSC Adv ; 10(68): 41305-41314, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35516581

RESUMEN

Reactive oxygen species (ROS) are key markers of inflammation, with varying levels of superoxide indicating the degree of inflammation. Inflammatory diseases remain the leading cause of death in the developed world. Previously, we showed that interpolymer complexed superparamagnetic iron oxide nanoparticles (IPC-SPIOs) are capable of decomplexing and activating T2 magnetic resonance (MR) contrast in superoxide-rich environments. Here, we investigate the ability of IPC-SPIOs to scavenge ROS in immune and endothelial cells which should activate the superparamagnetic core. In exogenously generated superoxide, ROS scavenging by the nanoparticles was concentration dependent and ranged from 5% to over 50% of available ROS. A statistically significant reduction in ROS was observed in the presence of IPCSPIOs compared to poly(ethylene glycol)-coated SPIOs (PEG-SPIOs). During in vitro cellular assays, a reduction in ROS was observed in macrophages, monocytes, and human endothelial cells. Macrophages and endothelial cells experienced significantly higher ROS reduction compared to monocytes. ROS scavenging peaked 12 hours post-exposure to IPC-SPIOs in most studies, with some cell samples experiencing extended scavenging with increasing IPC-SPIO concentration. At the tested concentrations, particles were not cytotoxic, and confocal imaging showed localization of particles within cells. These findings demonstrate the potential of IPC-SPIOs as activatable MR contrast agents capable of activating under inflammation-induced cellular redox conditions as reporters of inflammatory disease severity or staging.

7.
NanoImpact ; 11: 82-91, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30238068

RESUMEN

The rapid development of modern nanotechnology has resulted in nanomaterial being use in nearly all applications of life, raising the potential risk of nanomaterial exposure alongside the need to design safe and effective materials. Previous work has demonstrated a specific effect of gold nanoparticles (GNPs) of approximately 20 nm on endothelial barrier function in vitro. To expand our understanding of this size-specific effect, titanium dioxide, silicon dioxide, and polystyrene nanoparticles (NPs) in this similar size range were studied. All tested nanoparticles were found to have minimal effects on cell viability, but exhibited a significant detrimental effect on endothelial barrier function. Nanoparticles in the size range of 20 to 30 nm were internalized by endothelial cells through caveolae/raft-mediated endocytosis, causing intracellular calcium elevation by approximately 30% at 2 hours after administration, and triggering myosin light chain kinase (MLCK)-regulated actomyosin contraction. These effects culminated in an increase in endothelial monolayer permeability across all particle types within the 20-30 nm range. This nanoparticle exposure-induced endothelial barrier dysfunction may provide valuable information for designing safer nanomaterials or potential applications of this nanoparticle exposure-induced permeability effect in biomedicine.

8.
Chem Commun (Camb) ; 54(65): 9031-9034, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30047958

RESUMEN

SN-38 (7-ethyl-10-hydroxy-camptothecin) is an active metabolite of irinotecan (CPT-11) and the most potent camptothecin analogue. In this study, 2,4-dinitrobenzene sulfonyl (DNS) was covalently conjugated as a GSH-sensitive trigger to 10'-OH of SN-38 to yield a GSH-sensitive prodrug, denoted as DNS-SN38, with virtually quenched fluorescence due to donor-excited photo-induced electron transfer (d-PeT). By investigating DNS-SN38's activation properties upon fluorescence restoration and cytotoxic potency against ovarian cancer cell lines (A2780 and m-Cherry + OCSC1-F2), its potential applicability as a useful chemotherapeutic agent was demonstrated.


Asunto(s)
Antineoplásicos/farmacología , Camptotecina/análogos & derivados , Colorantes Fluorescentes/farmacología , Profármacos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Camptotecina/química , Camptotecina/metabolismo , Camptotecina/farmacología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Fluorescencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Glutatión/metabolismo , Humanos , Irinotecán , Cinética , Ratones , Microscopía Confocal , Profármacos/química , Profármacos/metabolismo
9.
Beilstein J Nanotechnol ; 9: 1228-1238, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765800

RESUMEN

The effect of nanoparticle surface coating characteristics on colloidal stability in solution is a critical parameter in understanding the potential applications of nanoparticles, especially in biomedicine. Here we explored the modification of the surface of poly(ethylene glycol)-coated superparamagnetic iron oxide nanoparticles (PEG-SPIOs) with the synthetic pseudotannin polygallol via interpolymer complexation (IPC). Changes in particle size and zeta potential were indirectly assessed via differences between PEG-SPIOs and IPC-SPIOs in particle velocity and scattering intensity using near-field light scattering. The local scattering intensity is correlated with the distance between the particle and waveguide, which is affected by the size of the particle (coating thickness) as well as the interactions between the particle and waveguide (related to the zeta potential of the coating). Therefore, we report here the use of near-field light scattering using nanophotonic force microscopy (using a NanoTweezerTM instrument, Halo Labs) to determine the changes that occurred in hydrated particle characteristics, which is accompanied by an analytical model. Furthermore, we found that altering the salt concentration of the suspension solution affected the velocity of particles due to the change of dielectric constant and viscosity of the solution. These findings suggest that this technique is suitable for studying particle surface changes and perhaps can be used to dynamically study reaction kinetics at the particle surface.

10.
ACS Appl Bio Mater ; 1(6): 1927-1941, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34996256

RESUMEN

Oncothermia, a special form of hyperthermia for oncological purposes, has been widely shown to be an effective mode of cancer therapy. However, its adoption among standard therapeutic practices has been limited by constraints in delivering sufficient thermal energy to tumor targets. To overcome these unique challenges in delivery presented by oncothermic therapeutics, we engineered a novel universal platform for hyperthermia cancer therapy utilizing versatile biocompatible materials. Herein, we show that Gold particle-in-particle (PIP), in which gold nanoparticles are physically confined within PLGA-PEG nanoparticles, significantly enhances thermal energy production by red-shifting the gold nanoparticle's absorption spectra via a mechanism in which we call nanoconfinement-induced therapeutic enhancement (NITE). NITE mediated Gold PIPs significantly suppress breast, skin, and multidrug resistant tumors and result in a multifold increase of heat shock protein expressed by cancer cells in vivo. Cotreatment of Gold PIP with doxorubicin shows a synergistic advantage. By using tumor-bearing mice, significant suppression of tumor growth by Gold PIPs shows the advantage of NITE mediated hyperthermia. Thus, we conclude that NITE mediated Gold PIP can be a strong anticancer therapy because of its sufficient amount of heat generation.

11.
Colloids Surf B Biointerfaces ; 158: 578-588, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28750340

RESUMEN

Magnetic resonance contrast agents that can be activated in response to specific triggers hold potential as molecular biosensors that may be of great utility in non-invasive disease diagnosis. We developed an activatable agent based on superparamagnetic iron oxide nanoparticles (SPIOs) that is sensitive to oxidative stress, a factor in the pathophysiology of numerous diseases. SPIOs were coated with poly(ethylene glycol) (PEG) and complexed with poly(gallol), a synthetic tannin. Hydrogen bonding between PEG and poly(gallol) creates a complexed layer around the SPIO that decreases the interaction of solute water with the SPIO, attenuating its magnetic resonance relaxivity. The complexed interpolymer nanoparticle is in an OFF state (decreased T2 contrast), where the contrast agent has a low T2 relaxivity of 7±2mM-1s-1. In the presence of superoxides, the poly(gallol) is oxidized and the polymers decomplex, allowing solute water to again interact with the SPIO, representing an ON state (increased T2 contrast) with a T2 relaxivity of 70±10mM-1s-1. These contrast agents show promise as effective sensors for diseases characterized in part by oxidative stress such as atherosclerosis, diabetes, and cancer.


Asunto(s)
Medios de Contraste/química , Nanopartículas de Magnetita/química , Compuestos Férricos/química , Imagen por Resonancia Magnética , Nanopartículas/química , Estrés Oxidativo , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA