Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Infect Dis ; 77(Suppl 7): S507-S518, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38118007

RESUMEN

Antimicrobial resistance (AMR) is a multifaceted global health problem disproportionately affecting low- and middle-income countries (LMICs). The Capturing data on Antimicrobial resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project was tasked to expand the volume of AMR and antimicrobial use data in Asia. The CAPTURA project used 2 data-collection streams: facility data and project metadata. Project metadata constituted information collected to map out data sources and assess data quality, while facility data referred to the retrospective data collected from healthcare facilities. A down-selection process, labelled "the funnel approach" by the project, was adopted to use the project metadata in prioritizing and selecting laboratories for retrospective AMR data collection. Moreover, the metadata served as a guide for understanding the AMR data once they were collected. The findings from CAPTURA's metadata add to the current discourse on the limitation of AMR data in LMICs. There is generally a low volume of AMR data generated as there is a lack of microbiology laboratories with sufficient antimicrobial susceptibility testing capacity. Many laboratories in Asia are still capturing data on paper, resulting in scattered or unused data not readily accessible or shareable for analyses. There is also a lack of clinical and epidemiological data captured, impeding interpretation and in-depth understanding of the AMR data. CAPTURA's experience in Asia suggests that there is a wide spectrum of capacity and capability of microbiology laboratories within a country and region. As local AMR surveillance is a crucial instrument to inform context-specific measures to combat AMR, it is important to understand and assess current capacity-building needs while implementing activities to enhance surveillance systems.


Asunto(s)
Antibacterianos , Países en Desarrollo , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Farmacorresistencia Bacteriana , Asia/epidemiología
2.
Angew Chem Int Ed Engl ; 55(33): 9680-4, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27412027

RESUMEN

Since the first prediction by Frenkel, many follow-up studies have been carried out to show the presence of subsurface space-charge layers having the opposite sign to that of the excess charge at the surface, producing overall neutrality in ionic crystals. However, no precise experimental evidence demonstrating how the aliovalent solutes segregate in the space-charge region beneath the surface has been provided over the past several decades. By utilizing atomic-scale imaging and chemical probing in a perovskite oxide, the origin of the surface excess charge at the topmost surface and the position of segregated dopants in the space-charge region is precisely determined. The impact of the space-charge contribution to the dopant distribution near the surface in oxide crystals is explored.

3.
Nat Commun ; 8(1): 1417, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127289

RESUMEN

Although theoretical studies and experimental investigations have demonstrated the presence of space-charge-induced dopant segregation, most work has been confined largely to the crystal-free surface and some special grain boundaries, and to the best of our knowledge there has been no systematic comparison to understand how the segregation varies at different types of interfaces in polycrystals. Here, through atomic-column resolved scanning transmission electron microscopy in real polycrystalline samples, we directly elucidate the space-charge segregation features at five distinct types of interfaces in an ABO3 perovskite oxide doped with A- and B-site donors. A series of observations reveals that both the interfacial atomic structure and the subsequent segregation behaviour are invariant regardless of the interface type. The findings in this study thus suggest that the electrostatic potential variation by the interface excess charge and compensating space charge provides a crucial contribution to determining not only the distribution of dopants but also the interfacial structure in oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA