RESUMEN
In this study, two host materials, pCzBzbCz and pCzPybCz, are synthesized to achieve a high efficiency and long lifetime of blue thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). The molecular design strategy involves the introduction of a pyridine group into the core structure of pCzPybCz as an electron-withdrawing unit, and an electron-donating phenyl group into the structure of pCzBzbCz. These host materials demonstrate good thermal stability and high triplet energy (T1 =3.07â eV for pCzBzbCz and 3.06â eV for pCzPybCz) for the fabrication of blue TADF-OLEDs. In particular, pCzPybCz-based OLED devices demonstrate an external quantum efficiency (EQE) of 22.7 % and an operational lifetime of 24â h (LT90 , time to attain 90 % of initial luminance) at an initial luminance of 1000â cd m-2 . This superior lifetime could be explained by the C-N bond dissociation energy (BDE) in the host molecular structure. Furthermore, a mixed-host system using the electron-deficient 2,4-bis(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine (DDBFT) is proposed to inhibit the formation of the anion state of our host materials. In short, the device operational lifetime is further improved by applying DDBFT. The carbazole-based asymmetric host molecule containing a pyridine core realizes a high-efficiency blue TADF-OLED showing a positive effect on the operating lifetime, and can provide useful strategies for designing new host materials.
RESUMEN
Although Enterococcus faecalis is known as a commensal microorganism in the gastrointestinal tract, it is linked to various foodborne infections. In addition, biofilm formation in E. faecalis is associated with the infections by exacerbating inflammation. Hence, we demonstrated that bacteriocins produced by Pediococcus acidilactici exhibited antibiofilm and anti-inflammatory activities against E. faecalis. Bacteriocins of P. acidilactici K10 and HW01 strains significantly reduced biofilm formation by E. faecalis on surfaces of polystyrene (p < 0.005 and p < 0.01 at 24 h, respectively) and stainless steel (p < 0.005 and p < 0.01 at 72 h, respectively), while both bacteriocins did not effectively reduce the growth of E. faecalis planktonic cells. Moreover, extracellular polymeric substances (EPSs) produced by E. faecalis were substantially decreased in the presence of P. acidilactici bacteriocin (p < 0.005), suggesting that E. faecalis biofilm formation was reduced by decreasing the production of EPSs, but not by killing bacteria. The bacteriocin of P. acidilactici also reduced the adhesion of E. faecalis to human intestinal epithelial cells (p < 0.005). Furthermore, both bacteriocins significantly inhibited E. faecalis-induced interleukin-8 production in human intestinal epithelial cells (p < 0.01 for K10 bacteriocin and p < 0.005 for HW01 bacteriocin). These results suggest that the bacteriocin of P. acidilactici can eradicate E. faecalis biofilms and inhibit the E. faecalis-induced inflammatory response in intestinal epithelial cells.
Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Bacteriocinas/farmacología , Biopelículas/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Pediococcus acidilactici/química , Adhesión Bacteriana , Células CACO-2 , Humanos , Viabilidad Microbiana , Acero InoxidableRESUMEN
BACKGROUND: The purpose of the present study was to examine the body composition of So-Yang type males according to Sasang constitutional medicine, which is popular in Korea. Different Sasang constitutional types are associated with different muscle distributions, body shapes, and disease susceptibilities. We used the Sasang Personality Questionnaire (SPQ) as a measure of the temperament of each Sasang type. METHODS: In total, 953 subjects aged over 20 years were recruited in Korea. We collected anthropometric parameters and bioimpedence information from the subjects and administered the SPQ. A logistic regression was conducted to calculate propensity scores. RESULTS: The percentage of skeletal muscle mass in So-Yang (SY) and non-So-Yang (non-SY) males was 45.8 ± 2.7 and 44.2 ± 3.3, respectively, before matching and 45.8 ± 2.6 and 44.9 ± 3.0, respectively, after propensity score matching. The extracellular water (ECW)/intracellular water (ICW) and extracellular water (ECW)/total body water (TBW) ratios and SPQ scores were significantly different between the SY and non-SY types. CONCLUSIONS: This study suggested that the SY type may be significantly and independently associated with body composition and could be associated with personality.
Asunto(s)
Composición Corporal/fisiología , Medicina Tradicional Coreana , Personalidad/fisiología , Adulto , Antropometría , Estudios Transversales , Impedancia Eléctrica , Femenino , Humanos , Masculino , Persona de Mediana Edad , República de Corea/epidemiología , Adulto JovenRESUMEN
Background: Infections of Coronavirus Disease-2019 (COVID-19) can cause long-term effects known as long COVID. This pilot study aimed to evaluate the feasibility of a clinical study as well as the efficacy and safety of traditional East Asian herbal medicines in alleviating fatigue and cognitive dysfunction in patients with long COVID. Methods: This prospective pilot study investigated the use of three types of herbal medicines, Bojungikgi-tang (BIT), Kyungok-go (KOG), and Cheonwangbosim-dan (CBD), for a 12-week period as potential treatments for fatigue and cognitive dysfunction in patients with long COVID. Forty-five patients with long COVID were recruited, and one of three drugs was given based on the patient's symptoms and pattern identification. The effect of herbal medications on fatigue and cognitive function outcomes was assessed over a 36-week period, with patient adherence closely monitored. Results: After 12 weeks of herbal drug administration, fatigue symptoms improved significantly across all groups, with treatment success rates of 80 %, 53.33 %, and 46.67 % in the BIT, KOG, and CBD groups, respectively. However, cognitive dysfunction symptoms showed less improvement, with treatment success rates of 40 %, 46.67 %, and 13.33 % in the BIT, KOG, and CBD groups, respectively. All adverse events reported were mild and unrelated to the medication. The study design was found to be feasible with high medication adherence. Conclusions: This study demonstrated the feasibility of conducting a clinical trial with three herbal medicines to treat long COVID symptoms like fatigue and cognitive dysfunction.
RESUMEN
Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.
RESUMEN
OBJECTIVE: To compare the outcomes of anterior lumbar interbody fusion (ALIF), oblique lumbar interbody fusion (OLIF), and transforaminal lumbar interbody fusion (TLIF) in terms of global sagittal alignment. METHODS: From January 2007 to December 2019, 141 adult patients who underwent multilevel interbody fusion for lumbar degenerative disorders were enrolled. Regarding the approach, patients were divided into the ALIF (n=23), OLIF (n=60), and TLIF (n=58) groups. Outcomes, including local radiographic parameters and global sagittal alignment, were then compared between the treatment groups. RESULTS: Regarding local radiographic parameters, ALIF and OLIF were superior to TLIF in terms of the change in the anterior disc height (7.6±4.5 mm vs. 6.9±3.2 mm vs. 4.7±2.9 mm, p<0.001), disc angle (-10.0°±6.3° vs. -9.2°±5.2° vs. -5.1°±5.1°, p<0.001), and fused segment lordosis (-14.5°±11.3° vs. -13.8°±7.5° vs. -7.4°±9.1°, p<0.001). However, regarding global sagittal alignment, postoperative lumbar lordosis (-42.5°±9.6° vs. -44.4°±11.6° vs. -40.6°±12.3°, p=0.210), pelvic incidence-lumbar lordosis mismatch (7.9°±11.3° vs. 6.7°±11.6° vs. 11.5°±13.0°, p=0.089), and the sagittal vertical axis (24.3±28.5 mm vs. 24.5±34.0 mm vs. 25.2±36.6 mm, p=0.990) did not differ between the groups. CONCLUSION: Although the anterior approaches were superior in terms of local radiographic parameters, TLIF achieved adequate global sagittal alignment, comparable to the anterior approaches.
RESUMEN
Surface-enhanced Raman scattering (SERS) is an effective technique for amplifying the Raman signal of molecules by using metal nanostructures. However, these metal surfaces are susceptible to contamination by undesirable adhesives in complex mixtures, typically necessitating a time-consuming and costly sample pretreatment. In order to circumvent this, metal nanoparticles have been uniformly embedded within microgels by using microfluidics. In this work, we introduce a simple, scalable micromolding method for creating SERS-active cylindrical microgels designed to eliminate the need for pretreatment. These microcylinders are created through the simultaneous photoreduction and photo-cross-linking of precursor solutions. These solutions are optimized for consistent, high-intensity Raman signals as well as molecular size and charge selectivity. A sequential micromolding method is employed to design dual-compartment microcylinders, offering additional functionalities such as optical encoding, magnetoresponsiveness, and dual-charge selectivity. These SERS-active microcylinders provide robust Raman signals of small molecules, even in the presence of adhesive proteins, without compromising sensitivity. To demonstrate this capability, we directly detect pyocyanin in saliva and tartrazine in whole milk without any need for sample pretreatment.
RESUMEN
Salvia plebeia (Lamiaceae) is a medicinal plant containing diverse bioactive constituents that have biological properties. In this study, we determined the optimal conditions (media and auxin) for the hairy root culture of S. plebeia for the growth and accumulation of phenolic compounds and evaluated its antioxidant activities. Rosmarinic acid and five phenylpropanoids were detected using high-performance liquid chromatography. The hairy roots grown in 1/2 SH medium with 1 mg/L NAA had a high level of rosmarinic acid content. Hairy roots cultured in 1 mg/L NAA had the highest total content of five phenylpropanoids. Compared to wild-type roots grown in the field, hairy roots (NAA 1) expressed similar levels of rosmarinic acid but significantly enhanced phenylpropanoid accumulation. Furthermore, the total phenolic content and total flavonoid content of hairy roots (NAA 1) were 2.22 and 1.73 times higher than those of wild-type roots. In the results of DPPH, ABTS, and reducing power assays, the hairy roots (NAA 1) showed higher free radical scavenging effects and reduction potential than the wild-type roots. These results suggest that S. plebeia hairy roots cultured under optimal conditions, which exhibit enhanced phenolic compound accumulation and antioxidant activity, can potentially be used as sources of antioxidants.
RESUMEN
Caryophyllaceae is a large angiosperm family, with many species being utilized as ornamental or medicinal plants in Korea, in addition to several endangered species that are managed by the government. In this study, we used DNA barcoding for the accurate identification of Korean Caryophyllaceae. A total of 78 taxa (n = 215) were sequenced based on three chloroplast regions (rbcL, matK, and psbA-trnH) and nuclear ribosomal internal transcribed spacers (ITS). In the neighbor-joining tree, a higher accuracy of identification was generally observed when using ITS (>73%) rather than chloroplast regions (<62%). The highest resolution was found for rbcL + ITS (77.6%), although resolution varied according to the genus. Among the genera that included two and more species, five genera (Eremogone, Minuartia, Pseudostellaria, Sagina, and Stellaria) were successfully identified. However, the species of five other genera (Cerastium, Gypsophila, Dianthus, Silene, and Spergularia) showed relatively low resolutions (0-61.1%). In the cases of Cerastium, Dianthus, and Silene, ambiguous taxonomic relationships among unidentified species may have been a factor contributing to such low resolutions. However, in contrast to these results, Gypsophila and Spergularia have been identified well in previous studies. Our findings indicate the need of taxonomic reconsideration in Korea.
RESUMEN
The seriousness of the diseases caused by aging have recently gained attention. Alzheimer's disease (AD), a chronic neurodegenerative disease, accounts for 60-80% of senile dementia cases. Continuous research is being conducted on the cause of Alzheimer's disease, and it is believed to include complex factors, such as genetic factors, the accumulation of amyloid beta plaques, a tangle of tau protein, oxidative stress, cholinergic dysfunction, neuroinflammation, and cell death. Sinapic acid is a hydroxycinnamic acid found in plant families, such as oranges, grapefruit, cranberry, mustard seeds, and rapeseeds. It exhibits various biological activities, including anti-inflammatory, anti-oxidant, anti-cancer, and anti-depressant effects. Sinapic acid is an acetylcholine esterase inhibitor that can be applied to the treatment of dementia caused by Alzheimer's disease and Parkinson's disease. However, electrophysiological studies on the effects of sinapic acid on memory and learning must still be conducted. Therefore, it was confirmed that sinapic acid was effective in long-term potentiation (LTP) using organotypic hippocampal segment tissue. In addition, the effect on scopolamine-induced learning and memory impairment was measured by oral administration of sinapic acid 10 mg/kg/day for 14 days, and behavioral experiments related to short-term and long-term spatial memory and avoidance memory were conducted. Sinapic acid increased the activity of the field excitatory postsynaptic potential (fEPSP) in a dose-dependent manner after TBS, and restored fEPSP activity in the CA1 region suppressed by scopolamine. The scopolamine-induced learning and memory impairment group showed lower results than the control group in the Y-maze, Passive avoidance (PA), and Morris water maze (MWM) experiments. Sinapic acid improved avoidance memory, short and long-term spatial recognition learning, and memory. In addition, sinapic acid weakened the inhibition of the brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB) and the activation of prostaglandin-endoperoxide synthase 2 (COX-2) and interleukin 1 beta (IL-1ß) induced by scopolamine in the hippocampus. These results show that sinapic acid is effective in restoring LTP and cognitive impairment induced by the cholinergic receptor blockade. Moreover, it showed the effect of alleviating the reduction in scopolamine-induced BDNF and TrkB, and alleviated neuroinflammatory effects by inhibiting the increase in COX-2 and IL-1ß. Therefore, we showed that sinapic acid has potential as a treatment for neurodegenerative cognitive impairment.
RESUMEN
BACKGROUND: Trophinin is an intrinsic membrane protein that forms a complex in the cytoplasm with bystin and tastin, linking it microtubule-associated motor dynein (ATPase) in some cell types. Previously, we found that human sperm tails contain trophinin, bystin and tastin proteins, and that trophinin-binding GWRQ (glycine, tryptophan, arginine, glutamine) peptide enhanced motility of human sperm. METHODS: Immunohistochemistry was employed to determine trophinin protein in mouse spermatozoa from wild type mouse, by using spermatozoa from trophinin null mutant mice as a negative control. Multivalent 8-branched GWRQ (glycine, tryptophan, arginine, glutamine) peptide or GWRQ-MAPS, was chemically synthesized, purified by HPLC and its structure was confirmed by MALDI-TOF mass spectrometry. Effect of GWRQ-MAPS on mouse spermatozoa from wild type and trophinin null mutant was assessed by a computer-assisted semen analyzer (CASA). RESULTS: Anti-trophinin antibody stained the principal (central) piece of the tail of wild type mouse sperm, whereas the antibody showed no staining on trophinin null sperm. Phage particles displaying GWRQ bound to the principal piece of sperm tail from wild type but not trophinin null mice. GWRQ-MAPS enhanced motility of spermatozoa from wild type but not trophinin null mice. CASA showed that GWRQ-MAPS enhanced both progressive motility and rapid motility in wild type mouse sperm. CONCLUSIONS: Present study established the expression of trophinin in the mouse sperm tail and trophinin-dependent effect of GWRQ-MAPS on sperm motility. GWRQ causes a significant increase in sperm motility.
Asunto(s)
Moléculas de Adhesión Celular/fisiología , Péptidos/fisiología , Motilidad Espermática/fisiología , Regulación hacia Arriba/fisiología , Animales , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/química , Péptidos/metabolismo , Unión Proteica/fisiologíaRESUMEN
Efficient production of insulin in response to changes in glucose levels has been a major issue for insulin gene therapy to treat diabetes. To express target genes in response to glucose specifically in hepatocytes, we generated a synthetic promoter library containing hepatocyte nuclear factor-1, CAAT/enhancer-binding protein (C/EBP) response element, and glucose-response element. Combinations of these three cis-elements in 3-, 6-, or 9-element configurations were screened for transcriptional activity and then glucose responsiveness in vitro. The most effective promoter (SP23137) was selected for further study. Intravenous administration of a recombinant adenovirus expressing furin-cleavable rat insulin under control of the SP23137 promoter into streptozotocin (STZ)-induced diabetic mice resulted in normoglycemia, which was maintained for >30 days. Glucose tolerance tests showed that treated mice produced insulin in response to glucose and cleared exogenous glucose from the blood in a manner similar to nondiabetic control mice, although the clearance was somewhat delayed. Insulin expression was seen specifically in the liver and not in other organs. These observations indicate the potential of this synthetic, artificial promoter to regulate glucose-responsive insulin production and remit hyperglycemia, thus providing a new method of liver-directed insulin gene therapy for type 1 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Genes Sintéticos , Terapia Genética , Glucosa , Insulina , Hígado , Regiones Promotoras Genéticas , Adenoviridae/genética , Adenoviridae/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Biblioteca de Genes , Orden Génico , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Células HeLa , Humanos , Hiperglucemia/terapia , Insulina/genética , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones SCID , Especificidad de Órganos/genética , Regiones Promotoras Genéticas/genética , Ratas , Ratas Sprague-Dawley , Análisis de SupervivenciaRESUMEN
In this study, the fermentation of Artemisia capillaris by probiotic Leuconostoc mesenteroides MKJW (MKJW) was optimized to increase the acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory and antioxidant activities using the response surface method (RSM). The independent variables were the contents of A. capillaris, Gryllus bimaculatus, and yeast extract, while the dependent variables were AChE inhibitory activity, BuChE inhibitory activity, and antioxidant activities such as FRAP, reducing power, and DPPH radical scavenging ability. Seventeen experimental runs were designed with RSM and analyzed after fermentation with MKJW. Quadratic models were used to analyze the inhibition of AChE and BuChE, and a linear model was used to analyze the FRAP. The three models were significantly appropriate (p < 0.0001). The highest optimal condition of the AChE inhibitory activity was derived by a multiple regression equation. When the optimum fermentation conditions were A. capillaris 6.75%, G. bimaculatus 0.18%, and yeast extract 1.27%, 91.1% was reached for AChE inhibitory, 74.0% for BuChE inhibitory, and 34.1 mM FeSO4 for FRAP. The predicted dependent variables were not significantly different from the experimental values (p > 0.05). In conclusion, the A. capillaris fermented by MKJW might be used as a natural antidementia improving agent with AChE inhibitory, BuChE inhibitory, and antioxidant activities.
RESUMEN
PURPOSE: Postoperative nausea and vomiting (PONV) occurs frequently after bariatric surgery and is a major cause of adverse outcomes. This retrospective study investigated whether opioid-restricted total intravenous anesthesia using dexmedetomidine as a substitute for remifentanil can reduce PONV in bariatric surgery. MATERIALS AND METHODS: The electronic medical records of adult patients who underwent laparoscopic bariatric surgery between January and December 2019 were reviewed. The patients were divided into two groups according to the agents used for anesthesia: Group D, propofol and dexmedetomidine; Group R, propofol and remifentanil. RESULTS: A total of 134 patients were included in the analyses. The frequency of postoperative nausea was significantly lower in Group D than that in Group R until 2 h after discharge from the postanesthesia care unit (PACU) (P = 0.005 in the PACU, P = 0.010 at 2 h after PACU discharge) but failed to significantly reduce the overall high incidence rates of 60.5% and 65.5%, respectively (P = 0.592). Postoperative pain score was significantly lower in Group D until 6 h after PACU discharge. The rates of rescue antiemetic and analgesic agent administration in the PACU were significantly lower in Group D than those in Group R. CONCLUSION: Opioid-restricted total intravenous anesthesia using dexmedetomidine reduces postoperative nausea, pain score, antiemetic, and analgesic requirements in the immediate postoperative period after bariatric surgery.
Asunto(s)
Antieméticos , Cirugía Bariátrica , Dexmedetomidina , Obesidad Mórbida , Propofol , Adulto , Analgésicos/uso terapéutico , Analgésicos Opioides/uso terapéutico , Antieméticos/uso terapéutico , Cirugía Bariátrica/efectos adversos , Método Doble Ciego , Humanos , Obesidad Mórbida/cirugía , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/epidemiología , Dolor Postoperatorio/prevención & control , Náusea y Vómito Posoperatorios/tratamiento farmacológico , Náusea y Vómito Posoperatorios/epidemiología , Náusea y Vómito Posoperatorios/prevención & control , Remifentanilo/uso terapéutico , Estudios RetrospectivosRESUMEN
Endoplasmic reticulum (ER) stress has been linked to anesthesia-induced neurotoxicity, but melatonin seems to play a protective role against ER stress. Synchronized Caenorhabditis elegans were exposed to isoflurane during the developmental period; melatonin treatment was used to evaluate its role in preventing the defective unfolded protein response (UPR) and ER-associated protein degradation (ERAD). The induced expression of hsp-4::GFP by isoflurane was attenuated in the isoflurane-melatonin group. Isoflurane upregulated the expression of ire-1, whereas melatonin did not induce ire-1 expression in C. elegans even after isoflurane exposure. With luzindole treatment, the effect of melatonin on the level of ire-1 was significantly attenuated. The reduced expression of sel-1, sel-11, cdc-48.1, and cdc-48.2 due to isoflurane was restored by melatonin, although not up to the level of the control group. The amount of polyubiquitinated proteins was increased in the isoflurane group; however, melatonin suppressed its accumulation, which was significantly inhibited by a proteasome inhibitor, MG132. The chemotaxis index of the isoflurane-melatonin group was improved compared with the isoflurane group. Melatonin may be a potential preventive molecule against defective UPR and ERAD caused by repeated anesthesia exposure. The ire-1 branch of the UPR and ERAD pathways can be the target of melatonin to reduce anesthesia-induced ER stress.
Asunto(s)
Anestesia , Proteínas de Caenorhabditis elegans , Isoflurano , Melatonina , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estrés del Retículo Endoplásmico , Isoflurano/efectos adversos , Melatonina/metabolismo , Melatonina/farmacología , Proteínas/metabolismo , Respuesta de Proteína DesplegadaRESUMEN
Developing chemical methodologies to directly modify harmful biomolecules affords the mitigation of their toxicity by persistent changes in their properties and structures. Here we report compact photosensitizers composed of the anthraquinone (AQ) backbone that undergo excited-state intramolecular hydrogen transfer, effectively oxidize amyloidogenic peptides, and, subsequently, alter their aggregation pathways. Density functional theory calculations showed that the appropriate position of the hydroxyl groups in the AQ backbone and the consequent intramolecular hydrogen transfer can facilitate the energy transfer to triplet oxygen. Biochemical and biophysical investigations confirmed that these photoactive chemical reagents can oxidatively vary both metal-free amyloid-ß (Aß) and metal-bound Aß, thereby redirecting their on-pathway aggregation into off-pathway as well as disassembling their preformed aggregates. Moreover, the in vivo histochemical analysis of Aß species produced upon photoactivation of the most promising candidate demonstrated that they do not aggregate into oligomeric or fibrillar aggregates in the brain. Overall, our combined computational and experimental studies validate a light-based approach for designing small molecules, with minimum structural complexity, as chemical reagents targeting and controlling amyloidogenic peptides associated with neurodegenerative disorders.
RESUMEN
Long-term sequelae refer to persistent symptoms or signs for >6 months after SARS-CoV-2 infection. The most common symptoms of sequelae are fatigue and neuropsychiatric symptoms (concentration difficulty, amnesia, cognitive dysfunction, anxiety, and depression). However, approved treatments have not been fully established. Herbal medicines are administered for 12 weeks to patients who continuously complain of fatigue or cognitive dysfunction for >4 weeks that only occurred after COVID-19 diagnoses. Based on the Korean Medicine syndrome differentiation diagnosis, patients with fatigue will be administered Bojungikgi-tang or Kyungok-go, whereas those with cognitive dysfunction will be administered Cheonwangbosim-dan. Results could support evidence that herbal medicines may mitigate fatigue and cognitive dysfunction caused by COVID-19. Furthermore, by investigating the effects of herbal medicines on changes in metabolite and immune response due to COVID-19, which may be responsible for sequelae, the potential of herbal medicines as one of the therapeutic interventions for post-acute sequelae of SARS-CoV-2 infection can be evaluated. Therefore, the effects of herbal medicine on fatigue and cognitive dysfunction sequelae due to COVID-19 will be elucidated in this study to provide an insight into the preparation of medical management for the post-acute sequelae of SARS-CoV-2 infection.
RESUMEN
The hairy root (HR) culture system is an excellent alternative strategy to the whole plant system for producing valuable compounds. However, selection of suitable Agrobacterium strain for the successful induction of HR is an essential step for enhanced production of beneficial secondary metabolites. In this study, we examined the transformation efficiency of various A. rhizogenes strains (ATCC 13333, ATCC 15834, A4, R1000, R1200, and R1601) for transgenic HRs induction in Ocimum basilicum. Among the tested strains, the R1601 was found to be one of the most promising strain for mass production of HR in terms of transformation efficiency (94%) and the number and length of HR (8.4 ± 0.52 and 1.68 ± 0.14 cm). The HR induced by the same strain exhibited highest levels of rosmarinic acid level (62.05 ± 4.94 µg/g DW) and total phenolic content (62.3 ± 4.95 µg/g DW). A total of 55 metabolites were identified using high-performance liquid chromatography (HPLC) and gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). The PCA and PLS-DA plot of the identified metabolites showed that HR induced by A4 and ATCC 15834 displayed variation in primary and secondary metabolite contents. Analysis of the metabolic pathway identified a total of 56 pathways, among which 35 were found to be impacted. A heat map and hierarchical clustering analysis indicated that HR induced by different Agrobacterium strains exhibited differential metabolites profiles. In conclusion, Agrobacterium strains R1601 is one of the best and most promising strains for inducing mass HR production and enhanced levels of secondary metabolites in O. basilicum.
RESUMEN
The progression of neurodegenerative disorders can lead to impaired neurotransmission; however, the role of pathogenic factors associated with these diseases and their impact on the structures and functions of neurotransmitters have not been clearly established. Here we report the discovery that conformational and functional changes of a native neuropeptide, somatostatin (SST), occur in the presence of copper ions, metal-free amyloid-ß (Aß) and metal-bound Aß (metal-Aß) found as pathological factors in the brains of patients with Alzheimer's disease. These pathological elements induce the self-assembly of SST and, consequently, prevent it from binding to the receptor. In the reverse direction, SST notably modifies the aggregation profiles of Aß species in the presence of metal ions, attenuating their cytotoxicity and interactions with cell membranes. Our work demonstrates a loss of normal function of SST as a neurotransmitter and a gain of its modulative function against metal-Aß under pathological conditions.
Asunto(s)
Péptidos beta-Amiloides , Cobre , Somatostatina , Enfermedad de Alzheimer , Péptidos beta-Amiloides/química , Cobre/química , Humanos , Metales , Somatostatina/químicaRESUMEN
BACKGROUND: Skin aging is caused by exogenous and endogenous factors and is commonly manifested as wrinkling, sagging, and looseness of the skin. The herbal extract including Zingiber officinale Roscoe, Atractylodes chinensis (Bunge) Kodiz, Curcuma longa L., and Cinnamomum cassia (L.) J.Presl (ZACC extract), is widely used for So-eum (SE) Sasang constitutional type individuals. This study aimed to examine the protective effects of the ZACC extract against skin aging in 21 SE type subjects. METHODS: The safety and clinical efficacy of herbal cream were evaluated after application on human skin in a split-face randomized, double-blind, placebo-controlled study. The Sasang Constitution Analysis Tool (SCAT) was used to select 21 SE type subjects, who applied herbal cream and placebo cream for 12 weeks. Visual assessment, wrinkle parameters, questionnaires, and skin safety were evaluated. RESULTS: The visual assessment score was decreased by using of the herbal cream, but there were no significant differences between groups. Among the wrinkle parameters, R1 (skin roughness) and R4 (smoothness depth) values were significantly improved after the application of the herbal cream compared to those observed after application of the placebo cream for 12 weeks. No significant differences were observed in evaluation of the product efficacy and usability by questionnaires. There were no adverse dermatologic reactions in the SE type subjects during the evaluation period. CONCLUSION: The ZACC herbal cream may be used to prevent or slow skin aging, including wrinkle formation, in SE type individuals.