Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Biol Chem ; 299(6): 104819, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37187292

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV), which has been reported in China, Korea, Japan, Vietnam, and Taiwan, is a causative agent of severe fever thrombocytopenia syndrome. This virus has a high mortality and induces thrombocytopenia and leukocytopenia in humans, cats, and aged ferrets, whereas immunocompetent adult mice infected with SFTSV never show symptoms. Anti-SFTSV antibodies have been detected in several animals-including goats, sheep, cattle, and pigs. However, there are no reports of severe fever thrombocytopenia syndrome in these animals. Previous studies have reported that the nonstructural protein NSs of SFTSV inhibits the type I interferon (IFN-I) response through the sequestration of human signal transducer and activator of transcription (STAT) proteins. In this study, comparative analysis of the function of NSs as IFN antagonists in human, cat, dog, ferret, mouse, and pig cells revealed a correlation between pathogenicity of SFTSV and the function of NSs in each animal. Furthermore, we found that the inhibition of IFN-I signaling and phosphorylation of STAT1 and STAT2 by NSs depended on the binding ability of NSs to STAT1 and STAT2. Our results imply that the function of NSs in antagonizing STAT2 determines the species-specific pathogenicity of SFTSV.


Asunto(s)
Interferón Tipo I , Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Proteínas no Estructurales Virales , Anciano , Animales , Bovinos , Perros , Humanos , Ratones , Hurones , Interferón Tipo I/metabolismo , Phlebovirus/fisiología , Síndrome de Trombocitopenia Febril Grave/virología , Ovinos , Transducción de Señal , Porcinos , Trombocitopenia/metabolismo , Proteínas no Estructurales Virales/metabolismo
2.
J Virol ; 97(3): e0001523, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36794941

RESUMEN

Negative-strand RNA viruses (NSVs) represent one of the most threatening groups of emerging viruses globally. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic emerging virus that was initially reported in 2011 from China. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV. Here, L-type calcium channel blockers obtained from a U.S. Food and Drug Administration (FDA)-approved compound library were identified as effective anti-SFTSV compounds. Manidipine, a representative L-type calcium channel blocker, restricted SFTSV genome replication and exhibited inhibitory effects against other NSVs. The result from the immunofluorescent assay suggested that manidipine inhibited SFTSV N-induced inclusion body formation, which is believed to be important for the virus genome replication. We have shown that calcium possesses at least two different roles in regulating SFTSV genome replication. Inhibition of calcineurin, the activation of which is triggered by calcium influx, using FK506 or cyclosporine was shown to reduce SFTSV production, suggesting the important role of calcium signaling on SFTSV genome replication. In addition, we showed that globular actin, the conversion of which is facilitated by calcium from filamentous actin (actin depolymerization), supports SFTSV genome replication. We also observed an increased survival rate and a reduction of viral load in the spleen in a lethal mouse model of SFTSV infections after manidipine treatment. Overall, these results provide information regarding the importance of calcium for NSV replication and may thereby contribute to the development of broad-scale protective therapies against pathogenic NSVs. IMPORTANCE SFTS is an emerging infectious disease and has a high mortality rate of up to 30%. There are no licensed vaccines or antivirals against SFTS. In this article, L-type calcium channel blockers were identified as anti-SFTSV compounds through an FDA-approved compound library screen. Our results showed the involvement of L-type calcium channel as a common host factor for several different families of NSVs. The formation of an inclusion body, which is induced by SFTSV N, was inhibited by manidipine. Further experiments showed that SFTSV replication required the activation of calcineurin, a downstream effecter of the calcium channel. In addition, we identified that globular actin, the conversion of which is facilitated by calcium from filamentous actin, supports SFTSV genome replication. We also observed an increased survival rate in a lethal mouse model of SFTSV infection after manidipine treatment. These results facilitate both our understanding of the NSV replication mechanism and the development of novel anti-NSV treatment.


Asunto(s)
Infecciones por Bunyaviridae , Calcio , Phlebovirus , Animales , Ratones , Actinas/metabolismo , Infecciones por Bunyaviridae/virología , Calcineurina/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Modelos Animales de Enfermedad , Phlebovirus/efectos de los fármacos , Phlebovirus/fisiología , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología , Bazo/virología , Carga Viral
3.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30814285

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel emerging virus that has been identified in China, South Korea, and Japan, and it induces thrombocytopenia and leukocytopenia in humans with a high case fatality rate. SFTSV is pathogenic to humans, while immunocompetent adult mice and golden Syrian hamsters infected with SFTSV never show apparent symptoms. However, mice deficient for the gene encoding the α chain of the alpha- and beta-interferon receptor (Ifnar1-/- mice) and golden Syrian hamsters deficient for the gene encoding signal transducer and activator of transcription 2 (Stat2-/- hamsters) are highly susceptible to SFTSV infection, with infection resulting in death. The nonstructural protein (NSs) of SFTSV has been reported to inhibit the type I IFN response through sequestration of human STAT proteins. Here, we demonstrated that SFTSV induces lethal acute disease in STAT2-deficient mice but not in STAT1-deficient mice. Furthermore, we discovered that NSs cannot inhibit type I IFN signaling in murine cells due to an inability to bind to murine STAT2. Taken together, our results imply that the dysfunction of NSs in antagonizing murine STAT2 can lead to inefficient replication and the loss of pathogenesis of SFTSV in mice.IMPORTANCE Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTSV, which has been reported in China, South Korea, and Japan. Here, we revealed that mice lacking STAT2, which is an important factor for antiviral innate immunity, are highly susceptible to SFTSV infection. We also show that SFTSV NSs cannot exert its anti-innate immunity activity in mice due to the inability of the protein to bind to murine STAT2. Our findings suggest that the dysfunction of SFTSV NSs as an IFN antagonist in murine cells confers a loss of pathogenicity of SFTSV in mice.


Asunto(s)
Infecciones por Bunyaviridae/metabolismo , Phlebovirus/metabolismo , Factor de Transcripción STAT2/metabolismo , Animales , Antivirales/metabolismo , Infecciones por Bunyaviridae/virología , Glicoproteínas/metabolismo , Células HEK293 , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fiebre por Flebótomos/virología , Phlebovirus/patogenicidad , Fosforilación , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/fisiología , Especificidad de la Especie , Trombocitopenia/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virulencia
4.
J Gen Virol ; 100(2): 266-277, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30608228

RESUMEN

Recently, a large number of Japanese macaques (Macaca fuscata) died of an unknown hemorrhagic syndrome at Kyoto University Primate Research Institute (KUPRI) and an external breeding facility for National Institute for Physiological Sciences (NIPS). We previously reported that the hemorrhagic syndrome of Japanese macaques at KUPRI was caused by infection with simian retrovirus 4 (SRV-4); however, the cause of similar diseases that occurred at the external breeding facility for NIPS was still unknown. In this study, we isolated SRV-5 from Japanese macaques exhibiting thrombocytopenia and then constructed an infectious molecular clone of the SRV-5 isolate. When the SRV-5 isolate was inoculated into two Japanese macaques, severe thrombocytopenia was induced in one of two macaques within 22 days after inoculation. Similarly, the clone-derived virus was inoculated into the other two Japanese macaques, and one of two macaques developed severe thrombocytopenia within 22 days. On the other hand, the remaining two of four macaques survived as asymptomatic carriers even after administering an immunosuppressive agent, dexamethasone. As determined by real-time PCR, SRV-5 infected a variety of tissues in Japanese macaques, especially in digestive and lymph organs. We also identified the SRV-5 receptor as ASCT2, a neutral amino acid transporter in Japanese macaques. Taken together, we conclude that the causative agent of hemorrhagic syndrome occurred at the external breeding facility for NIPS was SRV-5.


Asunto(s)
Trastornos Hemorrágicos/veterinaria , Enfermedades de los Monos/patología , Enfermedades de los Monos/virología , Infecciones por Retroviridae/veterinaria , Retrovirus de los Simios/crecimiento & desarrollo , Retrovirus de los Simios/patogenicidad , Trombocitopenia/veterinaria , Animales , Trastornos Hemorrágicos/patología , Trastornos Hemorrágicos/virología , Macaca , Infecciones por Retroviridae/patología , Infecciones por Retroviridae/virología , Retrovirus de los Simios/aislamiento & purificación , Trombocitopenia/patología , Trombocitopenia/virología
6.
PLoS Pathog ; 13(5): e1006348, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28475648

RESUMEN

APOBEC3 (A3) family proteins are DNA cytosine deaminases recognized for contributing to HIV-1 restriction and mutation. Prior studies have demonstrated that A3D, A3F, and A3G enzymes elicit a robust anti-HIV-1 effect in cell cultures and in humanized mouse models. Human A3H is polymorphic and can be categorized into three phenotypes: stable, intermediate, and unstable. However, the anti-viral effect of endogenous A3H in vivo has yet to be examined. Here we utilize a hematopoietic stem cell-transplanted humanized mouse model and demonstrate that stable A3H robustly affects HIV-1 fitness in vivo. In contrast, the selection pressure mediated by intermediate A3H is relaxed. Intriguingly, viral genomic RNA sequencing reveled that HIV-1 frequently adapts to better counteract stable A3H during replication in humanized mice. Molecular phylogenetic analyses and mathematical modeling suggest that stable A3H may be a critical factor in human-to-human viral transmission. Taken together, this study provides evidence that stable variants of A3H impose selective pressure on HIV-1.


Asunto(s)
Aminohidrolasas/genética , Citosina Desaminasa/genética , Infecciones por VIH/virología , VIH-1/fisiología , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Desaminasas APOBEC , Aminohidrolasas/metabolismo , Animales , Citidina Desaminasa , Citosina Desaminasa/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Infecciones por VIH/transmisión , VIH-1/genética , Humanos , Ratones , Ratones Noqueados , Modelos Genéticos , Mutación , Filogenia , ARN Viral/química , ARN Viral/genética , Análisis de Secuencia de ARN , Replicación Viral
7.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331087

RESUMEN

The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease.IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals.


Asunto(s)
Desaminasas APOBEC/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Productos del Gen vif/metabolismo , Virus de la Inmunodeficiencia Felina/genética , Desaminasas APOBEC/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Gatos , Evolución Molecular , Productos del Gen vif/genética , Interacciones Huésped-Patógeno , Virus de la Inmunodeficiencia Felina/metabolismo , Virus de la Inmunodeficiencia Felina/patogenicidad , Virulencia
8.
J Virol ; 90(1): 474-85, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26491161

RESUMEN

UNLABELLED: Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) DNA cytosine deaminases can be incorporated into progeny virions and inhibit lentiviral replication. On the other hand, viral infectivity factor (Vif) of lentiviruses antagonizes A3-mediated antiviral activities by degrading A3 proteins. It is known that domestic cat (Felis catus) APOBEC3Z3 (A3Z3), the ortholog of human APOBEC3H, potently suppresses the infectivity of vif-defective feline immunodeficiency virus (FIV). Although a recent report has shown that domestic cat encodes 7 haplotypes (hap I to hap VII) of A3Z3, the relevance of A3Z3 polymorphism in domestic cats with FIV Vif has not yet been addressed. In this study, we demonstrated that these feline A3Z3 variants suppress vif-defective FIV infectivity. We also revealed that codon 65 of feline A3Z3 is a positively selected site and that A3Z3 hap V is subject to positive selection during evolution. It is particularly noteworthy that feline A3Z3 hap V is resistant to FIV Vif-mediated degradation and still inhibits vif-proficient viral infection. Moreover, the side chain size, but not the hydrophobicity, of the amino acid at position 65 determines the resistance to FIV Vif-mediated degradation. Furthermore, phylogenetic analyses have led to the inference that feline A3Z3 hap V emerged approximately 60,000 years ago. Taken together, these findings suggest that feline A3Z3 hap V may have been selected for escape from an ancestral FIV. This is the first evidence for an evolutionary "arms race" between the domestic cat and its cognate lentivirus. IMPORTANCE: Gene diversity and selective pressure are intriguing topics in the field of evolutionary biology. A direct interaction between a cellular protein and a viral protein can precipitate an evolutionary arms race between host and virus. One example is primate APOBEC3G, which potently restricts the replication of primate lentiviruses (e.g., human immunodeficiency virus type 1 [HIV-1] and simian immunodeficiency virus [SIV]) if its activity is not counteracted by the viral Vif protein. Here we investigate the ability of 7 naturally occurring variants of feline APOBEC3, APOBEC3Z3 (A3Z3), to inhibit FIV replication. Interestingly, one feline A3Z3 variant is dominant, restrictive, and naturally resistant to FIV Vif-mediated degradation. Phylogenetic analyses revealed that the ancestral change that generated this variant could have been caused by positive Darwinian selection, presumably due to an ancestral FIV infection. The experimental-phylogenetic investigation sheds light on the evolutionary history of the domestic cat, which was likely influenced by lentiviral infection.


Asunto(s)
Citidina Desaminasa/metabolismo , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus de la Inmunodeficiencia Felina/inmunología , Virus de la Inmunodeficiencia Felina/fisiología , Replicación Viral , Animales , Gatos , Citidina Desaminasa/genética , Evolución Molecular , Productos del Gen vif/deficiencia , Selección Genética
9.
J Virol ; 89(7): 3965-75, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25609821

RESUMEN

UNLABELLED: In 2001-2002, six of seven Japanese macaques (Macaca fuscata) died after developing hemorrhagic syndrome at the Kyoto University Primate Research Institute (KUPRI). While the cause of death was unknown at the time, we detected simian retrovirus 4 (SRV-4) in samples obtained from a similar outbreak in 2008-2011, during which 42 of 43 Japanese macaques died after exhibiting hemorrhagic syndrome. In this study, we isolated SRV-4 strain PRI-172 from a Japanese macaque showing severe thrombocytopenia. When inoculated into four Japanese macaques, the isolate induced severe thrombocytopenia in all within 37 days. We then constructed an infectious molecular clone of strain PRI-172, termed pSR415, and inoculated the clone-derived virus into two Japanese macaques. These animals also developed severe thrombocytopenia in just 31 days after inoculation, and the virus was reisolated from blood, bone marrow, and stool. At necropsy, we observed bleeding from the gingivae and subcutaneous bleeding in all animals. SRV-4 infected a variety of tissues, especially in digestive organs, including colon and stomach, as determined by real-time reverse transcription-PCR (RT-PCR) and immunohistochemical staining. Furthermore, we identified the SRV-4 receptor as ASCT2, a neutral amino acid transporter. ASCT2 mRNA was expressed in a variety of tissues, and the distribution of SRV-4 proviruses in infected Japanese macaques correlated well with the expression levels of ASCT2 mRNA. From these results, we conclude that the causative agent of hemorrhagic syndrome in KUPRI Japanese macaques was SRV-4, and its receptor is ASCT2. IMPORTANCE: During two separate outbreaks at the KUPRI, in 2001-2002 and 2008-2011, 96% of Japanese macaques (JM) that developed an unknown hemorrhagic syndrome died. Here, we isolated SRV-4 from a JM developing thrombocytopenia. The SRV-4 isolate and a molecularly cloned SRV-4 induced severe thrombocytopenia in virus-inoculated JMs within 37 days. At necropsy, we observed bleeding from gingivae and subcutaneous bleeding in all affected JMs and reisolated SRV-4 from blood, bone marrow, and stool. The distribution of SRV-4 proviruses in tissues correlated with the mRNA expression levels of ASCT2, which we identified as the SRV-4 receptor. From these results, we conclude that SRV-4 was the causative agent of hemorrhagic syndrome in JMs in KUPRI.


Asunto(s)
Betaretrovirus/fisiología , Betaretrovirus/patogenicidad , Hemorragia/etiología , Enfermedades de los Primates/patología , Enfermedades de los Primates/virología , Infecciones por Retroviridae/veterinaria , Trombocitopenia/veterinaria , Animales , Sangre/virología , Médula Ósea/virología , Heces/virología , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/virología , Inmunohistoquímica , Macaca , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones por Retroviridae/complicaciones , Infecciones por Retroviridae/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trombocitopenia/complicaciones , Trombocitopenia/etiología
10.
Microbiol Immunol ; 60(4): 272-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26935128

RESUMEN

How host-virus co-evolutionary relationships manifest is one of the most intriguing issues in virology. To address this topic, the mammal-lentivirus relationship can be considered as an interplay of cellular and viral proteins, particularly apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) and viral infectivity factor (Vif). APOBEC3s enzymatically restrict lentivirus replication, whereas Vif antagonizes the host anti-viral action mediated by APOBEC3. In this study, the focus was on the interplay between feline APOBEC3 proteins and two feline immunodeficiency viruses in cats and pumas. To our knowledge, this study provides the first evidence of non-primate lentiviral Vif being incapable of counteracting a natural host's anti-viral activity mediated via APOBEC3 protein.


Asunto(s)
Citosina Desaminasa/metabolismo , Productos del Gen vif/metabolismo , Virus de la Inmunodeficiencia Felina/metabolismo , Desaminasas APOBEC , Animales , Gatos , Citidina Desaminasa , Citosina Desaminasa/genética , Evolución Molecular , Productos del Gen vif/genética , Productos del Gen vif/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus de la Inmunodeficiencia Felina/genética , Virus de la Inmunodeficiencia Felina/inmunología , Puma , Especificidad de la Especie , Virosis/veterinaria , Replicación Viral
11.
Microbiol Immunol ; 60(6): 427-36, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27193350

RESUMEN

Mammals have co-evolved with retroviruses, including lentiviruses, over a long period. Evidence supporting this contention is that viral infectivity factor (Vif) encoded by lentiviruses antagonizes the anti-viral action of cellular apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) of the host. To orchestrate E3 ubiquitin ligase complex for APOBEC3 degradation, Vifs utilize mammalian proteins such as core-binding factor beta (CBFB; for primate lentiviruses) or cyclophilin A (CYPA; for Maedi-Visna virus [MVV]). However, the co-evolutionary relationship between lentiviral Vif and the mammalian proteins associated with Vif-mediated APOBEC3 degradation is poorly understood. Moreover, it is unclear whether Vif proteins of small ruminant lentiviruses (SRLVs), including MVV and caprine arthritis encephalitis virus (CAEV), commonly utilize CYPA to degrade the APOBEC3 of their hosts. In this study, molecular phylogenetic and protein homology modeling revealed that Vif co-factors are evolutionarily and structurally conserved. It was also found that not only MVV but also CAEV Vifs degrade APOBEC3 of both sheep and goats and that CAEV Vifs interact with CYPA. These findings suggest that lentiviral Vifs chose evolutionarily and structurally stable proteins as their partners (e.g., CBFB or CYPA) for APOBEC3 degradation and, particularly, that SRLV Vifs evolved to utilize CYPA as their co-factor in degradation of ovine and caprine APOBEC3.


Asunto(s)
Virus de la Artritis-Encefalitis Caprina/genética , Ciclofilina A/genética , Ciclofilina A/metabolismo , Citidina Desaminasa/metabolismo , Productos del Gen vif/genética , Productos del Gen vif/metabolismo , Animales , Virus de la Artritis-Encefalitis Caprina/metabolismo , Células Cultivadas , Subunidad beta del Factor de Unión al Sitio Principal/genética , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citidina Desaminasa/genética , Evolución Molecular , Cabras , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Interleucina-2/genética , Filogenia , Ovinos
12.
J Gen Virol ; 96(9): 2867-2877, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26041873

RESUMEN

It has been estimated that human immunodeficiency virus type 1 originated from the zoonotic transmission of simian immunodeficiency virus (SIV) of chimpanzees, SIVcpz, and that SIVcpz emerged by the recombination of two lineages of SIVs in Old World monkeys (SIVgsn/mon/mus in guenons and SIVrcm in red-capped mangabeys) and SIVcpz Nef is most closely related to SIVrcm Nef. These observations suggest that SIVrcm Nef had an advantage over SIVgsn/mon/mus during the evolution of SIVcpz in chimpanzees, although this advantage remains uncertain. Nef is a multifunctional protein which downregulates CD4 and coreceptor proteins from the surface of infected cells, presumably to limit superinfection. To assess the possibility that SIVrcm Nef was selected by its superior ability to downregulate viral entry receptors in chimpanzees, we compared its ability to down-modulate viral receptor proteins from humans, chimpanzees and red-capped mangabeys with Nef proteins from eight other different strains of SIVs. Surprisingly, the ability of SIVrcm Nef to downregulate CCR5, CCR2B and CXCR6 was comparable to or lower than SIVgsn/mon/mus Nef, indicating that ability to down-modulate chemokine receptors was not the selective pressure. However, SIVrcm Nef significantly downregulates chimpanzee CD4 over SIVgsn/mon/mus Nefs. Our findings suggest the possibility that the selection of SIVrcm Nef by ancestral SIVcpz is due to its superior capacity to down-modulate chimpanzees CD4 rather than coreceptor proteins.


Asunto(s)
Evolución Molecular , Productos del Gen nef/genética , Lentivirus de los Primates/genética , Enfermedades de los Primates/genética , Receptores Virales/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virus de la Inmunodeficiencia de los Simios/genética , Animales , Cercocebus , Productos del Gen nef/metabolismo , Interacciones Huésped-Patógeno , Humanos , Lentivirus de los Primates/clasificación , Lentivirus de los Primates/metabolismo , Pan troglodytes , Filogenia , Enfermedades de los Primates/metabolismo , Enfermedades de los Primates/virología , Primates , Receptores Virales/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/clasificación , Virus de la Inmunodeficiencia de los Simios/metabolismo
13.
J Gen Virol ; 96(Pt 4): 887-892, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25516542

RESUMEN

APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3) proteins are cellular DNA deaminases that restrict a broad spectrum of lentiviruses. This process is counteracted by Vif (viral infectivity factor) of lentiviruses, which binds APOBEC3s and promotes their degradation. CBF-ß (core binding factor subunit ß) is an essential co-factor for the function of human immunodeficiency virus type 1 Vif to degrade human APOBEC3s. However, the requirement for CBF-ß in Vif-mediated degradation of other mammalian APOBEC3 proteins is less clear. Here, we determined the sequence of feline CBFB and performed phylogenetic analyses. These analyses revealed that mammalian CBFB is under purifying selection. Moreover, we demonstrated that CBF-ß is dispensable for feline immunodeficiency virus Vif-mediated degradation of APOBEC3s of its host. These findings suggested that primate lentiviruses have adapted to use CBF-ß, an evolutionary stable protein, to counteract APOBEC3 proteins of their hosts after diverging from other lentiviruses.


Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Citidina Desaminasa/metabolismo , VIH-1/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasas APOBEC , Animales , Gatos , Línea Celular , Citosina Desaminasa/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Filogenia
14.
J Gen Virol ; 95(Pt 7): 1464-1468, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24728711

RESUMEN

Feline morbillivirus (FmoPV) is an emerging virus in domestic cats and considered to be associated with tubulointerstitial nephritis. Although FmoPV was first described in China in 2012, there has been no report of the isolation of this virus in other countries. In this report, we describe the isolation and characterization of FmoPV from domestic cats in Japan. By using reverse transcription (RT)-PCR, we found that three of 13 urine samples from cats brought to veterinary hospitals were positive for FmoPV. FmoPV strains SS1 to SS3 were isolated from the RT-PCR-positive urine samples. Crandell-Rees feline kidney (CRFK) cells exposed to FmoPV showed cytopathic effects with syncytia formation, and FmoPV N protein was detected by indirect immunofluorescence assays. In addition, pleomorphic virus particles with apparent glycoprotein envelope spikes were observed by electron microscopy. By sequence analysis of FmoPV H and L genes, we found that FmoPVs showed genetic diversity; however, signatures of positive selection were not identified.


Asunto(s)
Enfermedades de los Gatos/virología , Variación Genética , Infecciones por Morbillivirus/veterinaria , Morbillivirus/clasificación , Morbillivirus/genética , Nefritis Intersticial/veterinaria , Animales , Gatos , Línea Celular , Efecto Citopatogénico Viral , Células Gigantes/virología , Japón , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Morbillivirus/aislamiento & purificación , Infecciones por Morbillivirus/virología , Nefritis Intersticial/virología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Orina/virología , Virión/ultraestructura
15.
J Virol ; 87(8): 4322-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365453

RESUMEN

Simian retrovirus type 4 (SRV-4), a simian type D retrovirus, naturally infects cynomolgus monkeys, usually without apparent symptoms. However, some infected monkeys presented with an immunosuppressive syndrome resembling that induced by simian immunodeficiency virus infection. Antiretrovirals with inhibitory activity against SRV-4 are considered to be promising agents to combat SRV-4 infection. However, although some antiretrovirals have been reported to have inhibitory activity against SRV-1 and SRV-2, inhibitors with anti-SRV-4 activity have not yet been studied. In this study, we identified antiretroviral agents with anti-SRV-4 activity from a panel of anti-human immunodeficiency virus (HIV) drugs using a robust in vitro luciferase reporter assay. Among these, two HIV reverse transcriptase inhibitors, zidovudine (AZT) and tenofovir disoproxil fumarate (TDF), potently inhibited SRV-4 infection within a submicromolar to nanomolar range, which was similar to or higher than the activities against HIV-1, Moloney murine leukemia virus, and feline immunodeficiency virus. In contrast, nonnucleoside reverse transcriptase inhibitors and protease inhibitors did not exhibit any activities against SRV-4. Although both AZT and TDF effectively inhibited cell-free SRV-4 transmission, they exhibited only partial inhibitory activities against cell-to-cell transmission. Importantly, one HIV integrase strand transfer inhibitor, raltegravir (RAL), potently inhibited single-round infection as well as cell-free and cell-to-cell SRV-4 transmission. These findings indicate that viral expansion routes impact the inhibitory activity of antiretrovirals against SRV-4, while only RAL is effective in suppressing both the initial SRV-4 infection and subsequent SRV-4 replication.


Asunto(s)
Antirretrovirales/farmacología , Retrovirus de los Simios/efectos de los fármacos , Adenina/análogos & derivados , Adenina/farmacología , Secuencia de Aminoácidos , Animales , Genes Reporteros , Integrasas/genética , Luciferasas/análisis , Luciferasas/genética , Pruebas de Sensibilidad Microbiana/métodos , Organofosfonatos/farmacología , Inhibidores de Proteasas/farmacología , ADN Polimerasa Dirigida por ARN/genética , Inhibidores de la Transcriptasa Inversa/farmacología , Alineación de Secuencia , Tenofovir , Zidovudina/farmacología
16.
J Virol ; 87(17): 9943-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824806

RESUMEN

We identified a new subgroup of koala retrovirus (KoRV), named KoRV-J, which utilizes thiamine transport protein 1 as a receptor instead of the Pit-1 receptor used by KoRV (KoRV-A). By subgroup-specific PCR, KoRV-J and KoRV-A were detected in 67.5 and 100% of koalas originating from koalas from northern Australia, respectively. Altogether, our results indicate that the invasion of the koala population by KoRV-J may have occurred more recently than invasion by KoRV-A.


Asunto(s)
Animales de Zoológico/virología , Retrovirus Endógenos/clasificación , Retrovirus Endógenos/genética , Phascolarctidae/virología , Secuencia de Aminoácidos , Animales , Australia , Secuencia de Bases , ADN Viral/genética , Retrovirus Endógenos/aislamiento & purificación , Evolución Molecular , Genes env , Células HEK293 , Especificidad del Huésped , Humanos , Japón , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido
17.
Arch Virol ; 159(3): 399-404, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24068581

RESUMEN

Retroviruses are classified as exogenous and endogenous retroviruses according to the mode of transmission. Endogenous retroviruses (ERVs) are retroviruses which have been integrated into germ-line cells and inherited from parents to offspring. Most ERVs are inactivated by deletions and mutations; however, certain ERVs maintain their infectivity and infect the same host and new hosts as exogenous retroviruses. All domestic cats have infectious ERVs, termed RD-114 virus. Several canine and feline attenuated vaccines are manufactured using RD-114 virus-producing cell lines such as Crandell-Rees feline kidney cells; therefore, it is possible that infectious RD-114 virus contaminates live attenuated vaccines. Recently, Japanese and UK research groups found that several feline and canine vaccines were indeed contaminated with infectious RD-114 virus. This was the first incidence of contamination of 'infectious' ERVs in live attenuated vaccines. RD-114 virus replicates efficiently in canine cell lines and primary cells. Therefore, it is possible that RD-114 virus infects dogs following inoculation with contaminated vaccines and induces proliferative diseases and immune suppression, if it adapts to grow efficiently in dogs. In this review, we summarize the incidence of contamination of RD-114 virus in live attenuated vaccines and potential risks of infection with RD-114 virus in dogs.


Asunto(s)
Contaminación de Medicamentos , Retrovirus Endógenos/aislamiento & purificación , Drogas Veterinarias , Vacunas Virales , Animales , Gatos , Línea Celular , Perros , Retrovirus Endógenos/fisiología , Reino Unido , Vacunas Atenuadas , Replicación Viral
18.
Microbiol Immunol ; 58(8): 432-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24931347

RESUMEN

PERV is integrated into the genome of all pigs. PERV-A and PERV-B are polytropic and can productively infect human cell lines, whereas PERV-C is ecotropic. Recombinant PERV-A/C can infect human cells and exhibits high titer replication. Therefore, use of pigs for human xenotransplantation raises concerns about the risks of transfer of this infectious agent from donors to xenotransplantation recipients. To establish strategies to inhibit PERV production from cells, in the present study, we investigated the mechanism of PERV budding and anti-PERV activity of Tetherin/BST-2. The results showed that DN mutants of WWP-2, Tsg101, and Vps4A/B markedly reduced PERV production in human and porcine cell lines, suggesting that PERV budding uses these cellular factors and the cellular MVB sorting pathway as well as many other retroviruses. Moreover, PERV production was also reduced by human and porcine Tetherin/BST-2. These data are useful for developing strategies to inhibit PERV production and may reduce the risk of PERV infection in xenotransplantation.


Asunto(s)
Retrovirus Endógenos/fisiología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología , Enfermedades de los Porcinos/virología , Liberación del Virus , Animales , Línea Celular , Regulación hacia Abajo , Retrovirus Endógenos/genética , Retrovirus Endógenos/aislamiento & purificación , Humanos , Receptores Virales/metabolismo , Infecciones por Retroviridae/etiología , Infecciones por Retroviridae/metabolismo , Porcinos , Enfermedades de los Porcinos/metabolismo , Trasplante Heterólogo/efectos adversos , Replicación Viral
19.
J Gen Virol ; 93(Pt 3): 603-607, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22131312

RESUMEN

All domestic cats carry an infectious endogenous retrovirus termed RD-114 virus. Recently, we and others found that several live-attenuated vaccines for dogs were contaminated with infectious RD-114 virus. In this study, we confirmed that the RD-114 virus efficiently infected and proliferated well in canine primary kidney cells, as well as three tested canine cell lines. Further, we identified canine ASCT1 and ASCT2, sodium-dependent neutral amino acid transporters, as RD-114 virus receptors. Canine ASCT2 also acts as a functional receptor for simian retrovirus 2, a pathogenic retrovirus that induces immunodeficiency in rhesus macaques. Identification of the canine receptor for RD-114 virus will help in evaluating the risk from vaccines contaminated by the virus.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Retrovirus Endógenos/fisiología , Receptores Virales/metabolismo , Acoplamiento Viral , Animales , Células Cultivadas , Perros , Virus del Mono Mason-Pfizer/fisiología
20.
Virus Genes ; 45(2): 393-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22639102

RESUMEN

RD-114 virus is a replication-competent feline endogenous retrovirus. RD-114 virus contaminates several feline and canine live attenuated vaccines and the issue of contamination of RD-114 virus in vaccines should be solved. To date, three infectious molecular clones (pSc3c, pCRT1, and pRD-UCL) have been reported. In this study, we sequenced the entire nucleotide sequence of pRD-UCL and compared the nucleotide sequences of the three infectious molecular clones. As a result, these three infectious clones were nearly identical with each other in gag-pol and env coding regions. These data support the notion that the active locus of infectious RD-114 virus is single in the feline genome. The length of long terminal repeat (LTR) of pCRT1 was 47 bp shorter than those of pSc3c and pRD-UCL. The 47-bp sequence named direct repeat A (DR-A) was duplicated in the U3 region in pSc3c and pRD-UCL. Although several potential enhancer binding sites are present in the DR-A, there was no significant difference in promoter activities between the LTRs of pRD-UCL and pCRT1 in two human cell lines. We also analyzed the splicing pattern of the RD-114 virus by reverse transcription-polymerase chain reaction and confirmed that RD-114 virus is a simple retrovirus. The data presented here will provide basic information about RD-114 virus to solve the contamination issue in live attenuated vaccines.


Asunto(s)
ADN Viral/genética , Retrovirus Endógenos/genética , Genoma Viral , Análisis de Secuencia de ADN , Animales , Gatos , Línea Celular , ADN Viral/química , Retrovirus Endógenos/aislamiento & purificación , Productos del Gen env/genética , Productos del Gen gag/genética , Productos del Gen pol/genética , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Empalme del ARN , Homología de Secuencia de Ácido Nucleico , Secuencias Repetidas Terminales , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA