Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 935, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180629

RESUMEN

Rice blast is a major problem in agriculture, affecting rice production and threatening food security worldwide. This disease, caused by the fungus Magnaporthe oryzae, has led to a lot of research since the discovery of the first resistance gene, pib, in 1999. Researchers have now identified more than 50 resistance genes on eight of the twelve chromosomes in rice, each targeting different strains of the pathogen.These genes are spread out across seventeen different loci. These genes, which primarily code for nucleotide-binding and leucine-rich repeat proteins, play an important part in the defense of rice against the pathogen, either alone or in combination with other genes. An important characteristic of these genes is the allelic or paralogous interactions that exist within these loci. These relationships contribute to the gene's increased capacity for evolutionary adaptation. The ability of resistance proteins to recognize and react to novel effectors is improved by the frequent occurrence of variations within the domains that are responsible for recognizing pathogen effectors. The purpose of this review is to summarize the progress that has been made in identifying these essential genes and to investigate the possibility of utilizing the allelic variants obtained from these genes in future rice breeding efforts to increase resistance to rice blast.


Asunto(s)
Alelos , Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Oryza/genética , Oryza/microbiología , Oryza/inmunología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Variación Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento/métodos , Magnaporthe/patogenicidad , Genes de Plantas , Ascomicetos/patogenicidad , Ascomicetos/genética
2.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240106

RESUMEN

Phyto-melatonin improves crop yield by mitigating the negative effects of abiotic stresses on plant growth. Numerous studies are currently being conducted to investigate the significant performance of melatonin in crops in regulating agricultural growth and productivity. However, a comprehensive review of the pivotal performance of phyto-melatonin in regulating plant morpho-physiological and biochemical activities under abiotic stresses needs to be clarified. This review focused on the research on morpho-physiological activities, plant growth regulation, redox status, and signal transduction in plants under abiotic stresses. Furthermore, it also highlighted the role of phyto-melatonin in plant defense systems and as biostimulants under abiotic stress conditions. The study revealed that phyto-melatonin enhances some leaf senescence proteins, and that protein further interacts with the plant's photosynthesis activity, macromolecules, and changes in redox and response to abiotic stress. Our goal is to thoroughly evaluate phyto-melatonin performance under abiotic stress, which will help us better understand the mechanism by which phyto-melatonin regulates crop growth and yield.


Asunto(s)
Melatonina , Melatonina/farmacología , Melatonina/metabolismo , Desarrollo de la Planta , Estrés Fisiológico , Productos Agrícolas/metabolismo , Fotosíntesis
3.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902415

RESUMEN

Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Virulencia/genética , Magnaporthe/genética , Oryza/genética , Enfermedades de las Plantas/genética
4.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835399

RESUMEN

Rice blast, caused by the Magnaporthe oryzae fungus, is one of the most devastating rice diseases worldwide. Developing resistant varieties by pyramiding different blast resistance (R) genes is an effective approach to control the disease. However, due to complex interactions among R genes and crop genetic backgrounds, different R-gene combinations may have varying effects on resistance. Here, we report the identification of two core R-gene combinations that will benefit the improvement of Geng (Japonica) rice blast resistance. We first evaluated 68 Geng rice cultivars at seedling stage by challenging with 58 M. oryzae isolates. To evaluate panicle blast resistance, we inoculated 190 Geng rice cultivars at boosting stage with five groups of mixed conidial suspensions (MCSs), with each containing 5-6 isolates. More than 60% cultivars displayed moderate or lower levels of susceptibility to panicle blast against the five MCSs. Most cultivars contained two to six R genes detected by the functional markers corresponding to 18 known R genes. Through multinomial logistics regression analysis, we found that Pi-zt, Pita, Pi3/5/I, and Pikh loci contributed significantly to seedling blast resistance, and Pita, Pi3/5/i, Pia, and Pit contributed significantly to panicle blast resistance. For gene combinations, Pita+Pi3/5/i and Pita+Pia yielded more stable pyramiding effects on panicle blast resistance against all five MCSs and were designated as core R-gene combinations. Up to 51.6% Geng cultivars in the Jiangsu area contained Pita, but less than 30% harbored either Pia or Pi3/5/i, leading to less cultivars containing Pita+Pia (15.8%) or Pita+Pi3/5/i (5.8%). Only a few varieties simultaneously contained Pia and Pi3/5/i, implying the opportunity to use hybrid breeding procedures to efficiently generate varieties with either Pita+Pia or Pita+Pi3/5/i. This study provides valuable information for breeders to develop Geng rice cultivars with high resistance to blast, especially panicle blast.


Asunto(s)
Magnaporthe , Oryza , Magnaporthe/genética , Genes prv , Oryza/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Resistencia a la Enfermedad/genética
5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806344

RESUMEN

The presence of phyto-hormones in plants at relatively low concentrations plays an indispensable role in regulating crop growth and yield. Salt stress is one of the major abiotic stresses limiting cotton production. It has been reported that exogenous phyto-hormones are involved in various plant defense systems against salt stress. Recently, different studies revealed the pivotal performance of hormones in regulating cotton growth and yield. However, a comprehensive understanding of these exogenous hormones, which regulate cotton growth and yield under salt stress, is lacking. In this review, we focused on new advances in elucidating the roles of exogenous hormones (gibberellin (GA) and salicylic acid (SA)) and their signaling and transduction pathways and the cross-talk between GA and SA in regulating crop growth and development under salt stress. In this review, we not only focused on the role of phyto-hormones but also identified the roles of GA and SA responsive genes to salt stress. Our aim is to provide a comprehensive review of the performance of GA and SA and their responsive genes under salt stress, assisting in the further elucidation of the mechanism that plant hormones use to regulate growth and yield under salt stress.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Estrés Salino , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/metabolismo , Hormonas , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Ácido Salicílico/metabolismo , Estrés Fisiológico/genética
6.
Sci Rep ; 14(1): 14653, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918529

RESUMEN

Sugarcane smut is the most damaging disease that is present almost across the globe, causing mild to severe yield losses depending upon the cultivar types, pathogen races and climatic conditions. Cultivation of smut-resistant cultivars is the most feasible and economical option to mitigate its damages. Previous investigations revealed that there is a scarcity of information on early detection and effective strategies to suppress etiological agents of smut disease due to the characteristics overlapping within species complexes. In this study, 104 sugarcane cultivars were screened by artificial inoculation with homogenate of all possible pathogen races of Sporisorium scitamineum during two consecutive growing seasons. The logistic smut growth pattern and the disease intrinsic rate were recorded by disease growth curve. Variable levels of disease incidence i.e., ranging from 0 to 54.10% were observed among these sugarcane cultivars. Besides, pathogen DNA in plant shoots of all the cultivars was successfully amplified by PCR method using smut-specific primers except 26 cultivars which showed an immune reaction in the field trial. Furthermore, the plant germination and tillering of susceptible sugarcane cultivars were greatly influenced by pathogen inoculation. In susceptible cultivars, S. scitamineum caused a significant reduction in setts germination, coupled with profuse tillering, resulting in fewer millable canes. Correlation analysis demonstrated that there was a positive relationship between reduction in setts germination and increase in the number of tillers. The present study would be helpful for the evaluation of smut resistance in a wide range of sugarcane germplasm, especially from the aspects of setts germination and tillers formation, and it also screened out several excellent germplasm for potential application in sugarcane breeding.


Asunto(s)
Germinación , Enfermedades de las Plantas , Saccharum , Saccharum/microbiología , Saccharum/crecimiento & desarrollo , Saccharum/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Resistencia a la Enfermedad/genética , Ustilaginales/patogenicidad , Ustilaginales/fisiología , Ustilaginales/genética
7.
Front Plant Sci ; 14: 1108507, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866369

RESUMEN

Melatonin is a pleiotropic signaling molecule that reduces the adverse effects of abiotic stresses, and enhances the growth and physiological function of many plant species. Several recent studies have demonstrated the pivotal role of melatonin in plant functions, specifically its regulation of crop growth and yield. However, a comprehensive understanding of melatonin, which regulates crop growth and yield under abiotic stress conditions, is not yet available. This review focuses on the progress of research on the biosynthesis, distribution, and metabolism of melatonin, and its multiple complex functions in plants and its role in the mechanisms of metabolism regulation in plants grown under abiotic stresses. In this review, we focused on the pivotal role of melatonin in the enhancement of plant growth and regulation of crop yield, and elucidated its interactions with nitric oxide (NO) and auxin (IAA, indole-3-acetic acid) when plants are grown under various abiotic stresses. The present review revealed that the endogenousapplication of melatonin to plants, and its interactions with NO and IAA, enhanced plant growth and yield under various abiotic stresses. The interaction of melatonin with NO regulated plant morphophysiological and biochemical activities, mediated by the G protein-coupled receptor and synthesis genes. The interaction of melatonin with IAA enhanced plant growth and physiological function by increasing the levels of IAA, synthesis, and polar transport. Our aim was to provide a comprehensive review of the performance of melatonin under various abiotic stresses, and, therefore, further explicate the mechanisms that plant hormones use to regulate plant growth and yield under abiotic stresses.

8.
Front Plant Sci ; 14: 1215343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534293

RESUMEN

Salt stress affects large cultivated areas worldwide, thus causing remarkable reductions in plant growth and yield. To reduce the negative effects of salt stress on plant growth and yield, plant hormones, nutrient absorption, and utilization, as well as developing salt-tolerant varieties and enhancing their morpho-physiological activities, are some integrative approaches to coping with the increasing incidence of salt stress. Numerous studies have been conducted to investigate the critical impacts of these integrative approaches on plant growth and yield. However, a comprehensive review of these integrative approaches, that regulate plant growth and yield under salt stress, is still in its early stages. The review focused on the major issues of nutrient absorption and utilization by plants, as well as the development of salt tolerance varieties under salt stress. In addition, we explained the effects of these integrative approaches on the crop's growth and yield, illustrated the roles that phytohormones play in improving morpho-physiological activities, and identified some relevant genes involve in these integrative approaches when the plant is subjected to salt stress. The current review demonstrated that HA with K enhance plant morpho-physiological activities and soil properties. In addition, NRT and NPF genes family enhance nutrients uptake, NHX1, SOS1, TaNHX, AtNHX1, KDML, RD6, and SKC1, maintain ion homeostasis and membrane integrity to cope with the adverse effects of salt stress, and sd1/Rht1, AtNHX1, BnaMAX1s, ipal-1D, and sft improve the plant growth and yield in different plants. The primary purpose of this investigation is to provide a comprehensive review of the performance of various strategies under salt stress, which might assist in further interpreting the mechanisms that plants use to regulate plant growth and yield under salt stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA