Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34934014

RESUMEN

Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger with an essential role in neuronal function. cAMP synthesis by adenylyl cyclases (AC) is controlled by G protein-coupled receptor (GPCR) signaling systems. However, the network of molecular players involved in the process is incompletely defined. Here, we used CRISPR/Cas9-based screening to identify that members of the potassium channel tetradimerization domain (KCTD) family are major regulators of cAMP signaling. Focusing on striatal neurons, we show that the dominant isoform KCTD5 exerts its effects through an unusual mechanism that modulates the influx of Zn2+ via the Zip14 transporter to exert unique allosteric effects on AC. We further show that KCTD5 controls the amplitude and sensitivity of stimulatory GPCR inputs to cAMP production by Gßγ-mediated AC regulation. Finally, we report that KCTD5 haploinsufficiency in mice leads to motor deficits that can be reversed by chelating Zn2+ Together, our findings uncover KCTD proteins as major regulators of neuronal cAMP signaling via diverse mechanisms.


Asunto(s)
AMP Cíclico/metabolismo , Canales de Potasio/metabolismo , Transducción de Señal , Regulación Alostérica , Animales , Conducta Animal , Sistemas CRISPR-Cas , Proteínas de Transporte de Catión/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , AMP Cíclico/biosíntesis , Humanos , Ratones , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
J Proteome Res ; 20(9): 4318-4330, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34342229

RESUMEN

G-protein-coupled receptors (GPCRs) initiate intracellular signaling events through heterotrimeric G-protein α-subunits (Gα) and the ßγ-subunit dimer (Gßγ). In this study, we utilized mass spectrometry to identify novel regulators of Gßγ signaling in human cells. This prompted our characterization of KCTD2 and KCTD5, two related potassium channel tetramerization domain (KCTD) proteins that specifically recognize Gßγ. We demonstrated that these KCTD proteins are substrate adaptors for a multisubunit CUL3-RING ubiquitin ligase, in which a KCTD2-KCTD5 hetero-oligomer associates with CUL3 through KCTD5 subunits and recruits Gßγ through both KCTD proteins in response to G-protein activation. These KCTD proteins promote monoubiquitination of lysine-23 within Gß1/2in vitro and in HEK-293 cells. Depletion of these adaptors from cancer cell lines sharply impairs downstream signaling. Together, our studies suggest that a KCTD2-KCTD5-CUL3-RING E3 ligase recruits Gßγ in response to signaling, monoubiquitinates lysine-23 within Gß1/2, and regulates Gßγ effectors to modulate downstream signal transduction.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Ubiquitina-Proteína Ligasas , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/genética , Humanos , Canales de Potasio , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Nature ; 500(7461): 237-41, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23903661

RESUMEN

Cellular metabolism converts available nutrients into usable energy and biomass precursors. The process is regulated to facilitate efficient nutrient use and metabolic homeostasis. Feedback inhibition of the first committed step of a pathway by its final product is a classical means of controlling biosynthesis. In a canonical example, the first committed enzyme in the pyrimidine pathway in Escherichia coli is allosterically inhibited by cytidine triphosphate. The physiological consequences of disrupting this regulation, however, have not been previously explored. Here we identify an alternative regulatory strategy that enables precise control of pyrimidine pathway end-product levels, even in the presence of dysregulated biosynthetic flux. The mechanism involves cooperative feedback regulation of the near-terminal pathway enzyme uridine monophosphate kinase. Such feedback leads to build-up of the pathway intermediate uridine monophosphate, which is in turn degraded by a conserved phosphatase, here termed UmpH, with previously unknown physiological function. Such directed overflow metabolism allows homeostasis of uridine triphosphate and cytidine triphosphate levels at the expense of uracil excretion and slower growth during energy limitation. Disruption of the directed overflow regulatory mechanism impairs growth in pyrimidine-rich environments. Thus, pyrimidine homeostasis involves dual regulatory strategies, with classical feedback inhibition enhancing metabolic efficiency and directed overflow metabolism ensuring end-product homeostasis.


Asunto(s)
Escherichia coli/metabolismo , Homeostasis , Pirimidinas/metabolismo , Carbono/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Enzimológica de la Expresión Génica , Genes Supresores , Nucleósido-Fosfato Quinasa/metabolismo , Pirimidinas/biosíntesis , Transferasas/genética , Transferasas/metabolismo , Uracilo/metabolismo , Uridina Monofosfato/metabolismo
4.
PLoS Genet ; 11(6): e1005292, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26091241

RESUMEN

The Skp1-Cul1-F box complex (SCF) associates with any one of a number of F box proteins, which serve as substrate binding adaptors. The human F box protein ßTRCP directs the conjugation of ubiquitin to a variety of substrate proteins, leading to the destruction of the substrate by the proteasome. To identify ßTRCP substrates, we employed a recently-developed technique, called Ligase Trapping, wherein a ubiquitin ligase is fused to a ubiquitin-binding domain to "trap" ubiquitinated substrates. 88% of the candidate substrates that we examined were bona fide substrates, comprising twelve previously validated substrates, eleven new substrates and three false positives. One ßTRCP substrate, CReP, is a Protein Phosphatase 1 (PP1) specificity subunit that targets the translation initiation factor eIF2α to promote the removal of a stress-induced inhibitory phosphorylation and increase cap-dependent translation. We found that CReP is targeted by ßTRCP for degradation upon DNA damage. Using a stable CReP allele, we show that depletion of CReP is required for the full induction of eIF2α phosphorylation upon DNA damage, and contributes to keeping the levels of translation low as cells recover from DNA damage.


Asunto(s)
Daño del ADN , Proteína Fosfatasa 1/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Unión Proteica , Biosíntesis de Proteínas , Estabilidad Proteica
5.
Biochemistry ; 51(25): 5091-104, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22650761

RESUMEN

We have characterized the posttranslational methylation of Rps2, Rps3, and Rps27a, three small ribosomal subunit proteins in the yeast Saccharomyces cerevisiae, using mass spectrometry and amino acid analysis. We found that Rps2 is substoichiometrically modified at arginine-10 by the Rmt1 methyltransferase. We demonstrated that Rps3 is stoichiometrically modified by ω-monomethylation at arginine-146 by mass spectrometric and site-directed mutagenic analyses. Substitution of alanine for arginine at position 146 is associated with slow cell growth, suggesting that the amino acid identity at this site may influence ribosomal function and/or biogenesis. Analysis of the three-dimensional structure of Rps3 in S. cerevisiae shows that arginine-146 makes contacts with the small subunit rRNA. Screening of deletion mutants encoding potential yeast methyltransferases revealed that the loss of the YOR021C gene results in the absence of methylation of Rps3. We demonstrated that recombinant Yor021c catalyzes ω-monomethylarginine formation when incubated with S-adenosylmethionine and hypomethylated ribosomes prepared from a YOR021C deletion strain. Interestingly, Yor021c belongs to the family of SPOUT methyltransferases that, to date, have only been shown to modify RNA substrates. Our findings suggest a wider role for SPOUT methyltransferases in nature. Finally, we have demonstrated the presence of a stoichiometrically methylated cysteine residue at position 39 of Rps27a in a zinc-cysteine cluster. The discovery of these three novel sites of protein modification within the small ribosomal subunit will now allow for an analysis of their functional roles in translation and possibly other cellular processes.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Arginina/genética , Arginina/metabolismo , Cisteína/metabolismo , Metilación , Familia de Multigenes/fisiología , Mutagénesis Sitio-Dirigida , Procesamiento Proteico-Postraduccional/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Zinc/metabolismo
6.
J Biol Chem ; 286(21): 18405-13, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21460220

RESUMEN

Modification of proteins of the translational apparatus is common in many organisms. In the yeast Saccharomyces cerevisiae, we provide evidence for the methylation of Rpl1ab, a well conserved protein forming the ribosomal L1 protuberance of the large subunit that functions in the release of tRNA from the exit site. We show that the intact mass of Rpl1ab is 14 Da larger than its calculated mass with the previously described loss of the initiator methionine residue and N-terminal acetylation. We determined that the increase in mass of yeast Rpl1ab is consistent with the addition of a methyl group to lysine 46 using top-down mass spectrometry. Lysine modification was confirmed by detecting (3)H-N-ε-monomethyllysine in hydrolysates of Rpl1ab purified from yeast cells radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. Mass spectrometric analysis of intact Rpl1ab purified from 37 deletion strains of known and putative yeast methyltransferases revealed that only the deletion of the YLR137W gene, encoding a seven-ß-strand methyltransferase, results in the loss of the +14-Da modification. We expressed the YLR137W gene as a His-tagged protein in Escherichia coli and showed that it catalyzes N-ε-monomethyllysine formation within Rpl1ab on ribosomes from the ΔYLR137W mutant strain lacking the methyltransferase activity but not from wild-type ribosomes. We also showed that the His-tagged protein could catalyze monomethyllysine formation on a 16-residue peptide corresponding to residues 38-53 of Rpl1ab. We propose that the YLR137W gene be given the standard name RKM5 (ribosomal lysine (K) methyltransferase 5). Orthologs of RKM5 are found only in fungal species, suggesting a role unique to their survival.


Asunto(s)
Proteína Metiltransferasas/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Escherichia coli/genética , Espectrometría de Masas , Metilación , Mutación , Proteína Metiltransferasas/química , Proteína Metiltransferasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
J Biol Chem ; 285(48): 37598-606, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20864530

RESUMEN

We have shown that Rpl3, a protein of the large ribosomal subunit from baker's yeast (Saccharomyces cerevisiae), is stoichiometrically monomethylated at position 243, producing a 3-methylhistidine residue. This conclusion is supported by top-down and bottom-up mass spectrometry of Rpl3, as well as by biochemical analysis of Rpl3 radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. The results show that a +14-Da modification occurs within the GTKKLPRKTHRGLRKVAC sequence of Rpl3. Using high-resolution cation-exchange chromatography and thin layer chromatography, we demonstrate that neither lysine nor arginine residues are methylated and that a 3-methylhistidine residue is present. Analysis of 37 deletion strains of known and putative methyltransferases revealed that only the deletion of the YIL110W gene, encoding a seven ß-strand methyltransferase, results in the loss of the +14-Da modification of Rpl3. We suggest that YIL110W encodes a protein histidine methyltransferase responsible for the modification of Rpl3 and potentially other yeast proteins, and now designate it Hpm1 (Histidine protein methyltransferase 1). Deletion of the YIL110W/HPM1 gene results in numerous phenotypes including some that may result from abnormal interactions between Rpl3 and the 25 S ribosomal RNA. This is the first report of a methylated histidine residue in yeast cells, and the first example of a gene required for protein histidine methylation in nature.


Asunto(s)
Metilhistidinas/metabolismo , Metiltransferasas/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Metiltransferasas/química , Metiltransferasas/genética , Datos de Secuencia Molecular , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
8.
Elife ; 82019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31486771

RESUMEN

Cultured mouse peritoneal macrophages release large numbers of ~30-nm cholesterol-rich particles. Here, we show that those particles represent fragments of the plasma membrane that are pulled away and left behind during the projection and retraction of filopodia and lamellipodia. Consistent with this finding, the particles are enriched in proteins found in focal adhesions, which attach macrophages to the substrate. The release of particles is abolished by blocking cell movement (either by depolymerizing actin with latrunculin A or by inhibiting myosin II with blebbistatin). Confocal microscopy and NanoSIMS imaging studies revealed that the plasma membrane-derived particles are enriched in 'accessible cholesterol' (a mobile pool of cholesterol detectable with the modified cytolysin ALO-D4) but not in sphingolipid-sequestered cholesterol [a pool detectable with ostreolysin A (OlyA)]. The discovery that macrophages release cholesterol-rich particles during cellular locomotion is likely relevant to cholesterol efflux and could contribute to extracellular cholesterol deposition in atherosclerotic plaques.


Asunto(s)
Membrana Celular/metabolismo , Movimiento Celular , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Colesterol/análisis , Macrófagos Peritoneales/metabolismo , Seudópodos/metabolismo , Animales , Células Cultivadas , Ratones , Proteínas/análisis
9.
Leukemia ; 33(8): 1881-1894, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30816328

RESUMEN

In more than 30% of B-cell precursor acute lymphoblastic leukaemia (B-ALL), chromosome 21 sequence is overrepresented through aneuploidy or structural rearrangements, exemplified by intrachromosomal amplification of chromosome 21 (iAMP21). Although frequent, the mechanisms by which these abnormalities promote B-ALL remain obscure. Intriguingly, we found copy number neutral loss of heterozygosity (CN-LOH) of 12q was recurrent in iAMP21-ALL, but never observed in B-ALL without some form of chromosome 21 gain. As a consequence of CN-LOH 12q, mutations or deletions of the adaptor protein, SH2B3, were converted to homozygosity. In patients without CN-LOH 12q, bi-allelic abnormalities of SH2B3 occurred, but only in iAMP21-ALL, giving an overall incidence of 18% in this sub-type. Review of published data confirmed a tight association between overrepresentation of chromosome 21 and both CN-LOH 12q and SH2B3 abnormalities in B-ALL. Despite relatively small patient numbers, preliminary analysis linked 12q abnormalities to poor outcome in iAMP21-ALL (p = 0.03). Homology modelling of a leukaemia-associated SH2 domain mutation and in vitro analysis of patient-derived xenograft cells implicated the JAK/STAT pathway as one likely target for SH2B3 tumour suppressor activity in iAMP21-ALL.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 21 , Pérdida de Heterocigocidad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas/genética , Proteínas Adaptadoras Transductoras de Señales , Humanos , Interleucina-7/farmacología , Péptidos y Proteínas de Señalización Intracelular , Mutación , Factor de Transcripción STAT5/fisiología
10.
PLoS One ; 7(1): e29984, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22279556

RESUMEN

The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%); higher concentrations to 68 mM (0.4%) did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response.


Asunto(s)
Caenorhabditis elegans/fisiología , Etanol/farmacología , Privación de Alimentos/fisiología , Longevidad/efectos de los fármacos , Estrés Fisiológico/fisiología , Aminoácidos/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Depresores del Sistema Nervioso Central/farmacología , Relación Dosis-Respuesta a Droga , Ácidos Grasos/metabolismo , Glutamina/análogos & derivados , Larva/genética , Larva/metabolismo , Larva/fisiología , Longevidad/genética , Longevidad/fisiología , Mutación , Factores de Tiempo
11.
J Biol Chem ; 282(26): 18879-85, 2007 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-17462988

RESUMEN

The first committed step in the biosynthesis of L-ascorbate from D-glucose in plants requires conversion of GDP-L-galactose to L-galactose 1-phosphate by a previously unidentified enzyme. Here we show that the protein encoded by VTC2, a gene mutated in vitamin C-deficient Arabidopsis thaliana strains, is a member of the GalT/Apa1 branch of the histidine triad protein superfamily that catalyzes the conversion of GDP-L-galactose to L-galactose 1-phosphate in a reaction that consumes inorganic phosphate and produces GDP. In characterizing recombinant VTC2 from A. thaliana as a specific GDP-L-galactose/GDP-D-glucose phosphorylase, we conclude that enzymes catalyzing each of the ten steps of the Smirnoff-Wheeler pathway from glucose to ascorbate have been identified. Finally, we identify VTC2 homologs in plants, invertebrates, and vertebrates, suggesting that a similar reaction is used widely in nature.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Ácido Ascórbico/biosíntesis , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Ácido Ascórbico/metabolismo , Galactosa/metabolismo , Glucosa/metabolismo , Guanosina Difosfato/metabolismo , Datos de Secuencia Molecular , Fosforilasas/genética , Fosforilasas/metabolismo , Fosforilación , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA