Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(2): 368-382, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036633

RESUMEN

Adenomatous polyposis coli (APC) is a microtubule plus-end scaffolding protein important in biology and disease. APC is implicated in RNA localization, although the mechanisms and functional significance remain unclear. We show APC is an RNA-binding protein and identify an RNA interactome by HITS-CLIP. Targets were highly enriched for APC-related functions, including microtubule organization, cell motility, cancer, and neurologic disease. Among the targets is ß2B-tubulin, known to be required in human neuron and axon migration. We show ß2B-tubulin is synthesized in axons and localizes preferentially to dynamic microtubules in the growth cone periphery. APC binds the ß2B-tubulin 3' UTR; experiments interfering with this interaction reduced ß2B-tubulin mRNA axonal localization and expression, depleted dynamic microtubules and the growth cone periphery, and impaired neuron migration. These results identify APC as a platform binding functionally related protein and RNA networks, and suggest a self-organizing model for the microtubule to localize synthesis of its own subunits.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Microtúbulos/metabolismo , Neurogénesis , Proteínas de Unión al ARN/metabolismo , Animales , Axones/metabolismo , Secuencia de Bases , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Movimiento Celular , Ganglios Espinales/citología , Estudio de Asociación del Genoma Completo , Conos de Crecimiento/metabolismo , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Mapas de Interacción de Proteínas , ARN Mensajero/metabolismo , Ratas , Alineación de Secuencia , Tubulina (Proteína)/metabolismo
2.
Nature ; 602(7897): 475-480, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929721

RESUMEN

Alphaviruses, like many other arthropod-borne viruses, infect vertebrate species and insect vectors separated by hundreds of millions of years of evolutionary history. Entry into evolutionarily divergent host cells can be accomplished by recognition of different cellular receptors in different species, or by binding to receptors that are highly conserved across species. Although multiple alphavirus receptors have been described1-3, most are not shared among vertebrate and invertebrate hosts. Here we identify the very low-density lipoprotein receptor (VLDLR) as a receptor for the prototypic alphavirus Semliki forest virus. We show that the E2 and E1 glycoproteins (E2-E1) of Semliki forest virus, eastern equine encephalitis virus and Sindbis virus interact with the ligand-binding domains (LBDs) of VLDLR and apolipoprotein E receptor 2 (ApoER2), two closely related receptors. Ectopic expression of either protein facilitates cellular attachment, and internalization of virus-like particles, a VLDLR LBD-Fc fusion protein or a ligand-binding antagonist block Semliki forest virus E2-E1-mediated infection of human and mouse neurons in culture. The administration of a VLDLR LBD-Fc fusion protein has protective activity against rapidly fatal Semliki forest virus infection in mouse neonates. We further show that invertebrate receptor orthologues from mosquitoes and worms can serve as functional alphavirus receptors. We propose that the ability of some alphaviruses to infect a wide range of hosts is a result of their engagement of evolutionarily conserved lipoprotein receptors and contributes to their pathogenesis.


Asunto(s)
Mosquitos Vectores , Virus de los Bosques Semliki , Animales , Proteínas Relacionadas con Receptor de LDL , Ligandos , Ratones , Receptores de LDL , Virus de los Bosques Semliki/metabolismo , Virus Sindbis/fisiología
3.
J Neurosci ; 44(3)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38050142

RESUMEN

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/metabolismo , Cognición , Neuronas/metabolismo , ARN , Empalme del ARN/genética , Proteínas tau/metabolismo
4.
Genome Res ; 32(10): 1795-1807, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36041859

RESUMEN

Mosaic loss of Chromosome Y (LOY) is a common acquired structural mutation in the leukocytes of aging men that is correlated with several age-related diseases, including Alzheimer's disease (AD). The molecular basis of LOY in brain cells has not been systematically investigated. Here, we present a large-scale analysis of single-cell and single-nuclei RNA brain data sets, yielding 851,674 cells, to investigate the cell type-specific burden of LOY. LOY frequencies differed widely between donors and CNS cell types. Among five well-represented neural cell types, LOY was enriched in microglia and rare in neurons, astrocytes, and oligodendrocytes. In microglia, LOY was significantly enriched in AD subjects. Differential gene expression (DE) analysis in microglia found 172 autosomal genes, three X-linked genes, and 10 pseudoautosomal genes associated with LOY. To our knowledge, we provide the first evidence of LOY in the microglia and highlight its potential roles in aging and the pathogenesis of neurodegenerative disorders such as AD.


Asunto(s)
Enfermedad de Alzheimer , Cromosomas Humanos Y , Humanos , Masculino , Anciano , Cromosomas Humanos Y/genética , Mosaicismo , Microglía , Enfermedad de Alzheimer/genética , Envejecimiento/genética
5.
Mol Psychiatry ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365240

RESUMEN

Several iPSC-derived three-dimensional (3D) cultures have been generated to model Alzheimer's disease (AD). While some AD-related phenotypes have been identified across these cultures, none of them could recapitulate multiple AD-related hallmarks in one model. To date, the transcriptomic features of these 3D models have not been compared with those of human AD brains. However, these data are crucial to understanding the pertinency of these models for studying AD-related pathomechanisms over time. We developed a 3D bioengineered model of iPSC-derived neural tissue that combines a porous scaffold composed of silk fibroin protein with an intercalated collagen hydrogel to support the growth of neurons and glial cells into complex and functional networks for an extended time, a fundamental requisite for aging studies. Cultures were generated from iPSC lines obtained from two subjects carrying the familial AD (FAD) APP London mutation, two well-studied control lines, and an isogenic control. Cultures were analyzed at 2 and 4.5 months. At both time points, an elevated Aß42/40 ratio was detected in conditioned media from FAD cultures. However, extracellular Aß42 deposition and enhanced neuronal excitability were observed in FAD culture only at 4.5 months, suggesting that extracellular Aß deposition may trigger enhanced network activity. Remarkably, neuronal hyperexcitability has been described in AD patients early in the disease. Transcriptomic analysis revealed the deregulation of multiple gene sets in FAD samples. Such alterations were strikingly similar to those observed in human AD brains. These data provide evidence that our patient-derived FAD model develops time-dependent AD-related phenotypes and establishes a temporal relation among them. Furthermore, FAD iPSC-derived cultures recapitulate transcriptomic features of AD patients. Thus, our bioengineered neural tissue represents a unique tool to model AD in vitro over time.

6.
Alzheimers Dement ; 20(4): 2952-2967, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38470006

RESUMEN

BACKGROUND: Impairment of the ubiquitin-proteasome system (UPS) has been implicated in abnormal protein accumulation in Alzheimer's disease. It remains unclear if genetic variation affects the intrinsic properties of neurons that render some individuals more vulnerable to UPS impairment. METHODS: Induced pluripotent stem cell (iPSC)-derived neurons were generated from over 50 genetically variant and highly characterized participants of cohorts of aging. Proteomic profiling, proteasome activity assays, and Western blotting were employed to examine neurons at baseline and in response to UPS perturbation. RESULTS: Neurons with lower basal UPS activity were more vulnerable to tau accumulation following mild UPS inhibition. Chronic reduction in proteasome activity in human neurons induced compensatory elevation of regulatory proteins involved in proteostasis and several proteasome subunits. DISCUSSION: These findings reveal that genetic variation influences basal UPS activity in human neurons and differentially sensitizes them to external factors perturbing the UPS, leading to the accumulation of aggregation-prone proteins such as tau. HIGHLIGHTS: Polygenic risk score for AD is associated with the ubiquitin-proteasome system (UPS) in neurons. Basal proteasome activity correlates with aggregation-prone protein levels in neurons. Genetic variation affects the response to proteasome inhibition in neurons. Neuronal proteasome perturbation induces an elevation in specific proteins involved in proteostasis. Low basal proteasome activity leads to enhanced tau accumulation with UPS challenge.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteostasis , Proteómica , Neuronas/metabolismo
7.
Mol Psychiatry ; 27(4): 1970-1989, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35194165

RESUMEN

Trisomy 21 (T21) causes Down syndrome and an early-onset form of Alzheimer's disease (AD). Here, we used human induced pluripotent stem cells (hiPSCs) along with CRISPR-Cas9 gene editing to investigate the contribution of chromosome 21 candidate genes to AD-relevant neuronal phenotypes. We utilized a direct neuronal differentiation protocol to bypass neurodevelopmental cell fate phenotypes caused by T21 followed by unbiased proteomics and western blotting to define the proteins dysregulated in T21 postmitotic neurons. We show that normalization of copy number of APP and DYRK1A each rescue elevated tau phosphorylation in T21 neurons, while reductions of RCAN1 and SYNJ1 do not. To determine the T21 alterations relevant to early-onset AD, we identified common pathways altered in familial Alzheimer's disease neurons and determined which of these were rescued by normalization of APP and DYRK1A copy number in T21 neurons. These studies identified disruptions in T21 neurons in both the axonal cytoskeletal network and presynaptic proteins that play critical roles in axonal transport and synaptic vesicle cycling. These alterations in the proteomic profiles have functional consequences: fAD and T21 neurons exhibit dysregulated axonal trafficking and T21 neurons display enhanced synaptic vesicle release. Taken together, our findings provide insights into the initial molecular alterations within neurons that ultimately lead to synaptic loss and axonal degeneration in Down syndrome and early-onset AD.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Células Madre Pluripotentes Inducidas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Axones , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Proteómica , Vesículas Sinápticas/metabolismo , Quinasas DyrK
8.
Brain ; 145(9): 3187-3202, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34928329

RESUMEN

Loss-of-function mutations in the X-linked endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome in males. Christianson syndrome involves endosome dysfunction leading to early cerebellar degeneration, as well as later-onset cortical and subcortical neurodegeneration, potentially including tau deposition as reported in post-mortem studies. In addition, there is reported evidence of modulation of amyloid-ß levels in experimental models wherein NHE6 expression was targeted. We have recently shown that loss of NHE6 causes defects in endosome maturation and trafficking underlying lysosome deficiency in primary mouse neurons in vitro. For in vivo studies, rat models may have an advantage over mouse models for the study of neurodegeneration, as rat brain can demonstrate robust deposition of endogenously-expressed amyloid-ß and tau in certain pathological states. Mouse models generally do not show the accumulation of insoluble, endogenously-expressed (non-transgenic) tau or amyloid-ß. Therefore, to study neurodegeneration in Christianson syndrome and the possibility of amyloid-ß and tau pathology, we generated an NHE6-null rat model of Christianson syndrome using CRISPR-Cas9 genome-editing. Here, we present the sequence of pathogenic events in neurodegenerating NHE6-null male rat brains across the lifespan. NHE6-null rats demonstrated an early and rapid loss of Purkinje cells in the cerebellum, as well as a more protracted neurodegenerative course in the cerebrum. In both the cerebellum and cerebrum, lysosome deficiency is an early pathogenic event, preceding autophagic dysfunction. Microglial and astrocyte activation also occur early. In the hippocampus and cortex, lysosome defects precede loss of pyramidal cells. Importantly, we subsequently observed biochemical and in situ evidence of both amyloid-ß and tau aggregation in the aged NHE6-null hippocampus and cortex (but not in the cerebellum). Tau deposition is widely distributed, including cortical and subcortical distributions. Interestingly, we observed tau deposition in both neurons and glia, as has been reported in Christianson syndrome post-mortem studies previously. In summary, this experimental model is among very few examples of a genetically modified animal that exhibits neurodegeneration with deposition of endogenously-expressed amyloid-ß and tau. This NHE6-null rat will serve as a new robust model for Christianson syndrome. Furthermore, these studies provide evidence for linkages between endolysosome dysfunction and neurodegeneration involving protein aggregations, including amyloid-ß and tau. Therefore these studies may provide insight into mechanisms of more common neurodegenerative disorders, including Alzheimer's disease and related dementias.


Asunto(s)
Enfermedad de Alzheimer , Microcefalia , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Ataxia , Encéfalo/patología , Modelos Animales de Enfermedad , Epilepsia , Enfermedades Genéticas Ligadas al Cromosoma X , Hipocampo/metabolismo , Discapacidad Intelectual , Lisosomas/metabolismo , Masculino , Microcefalia/genética , Trastornos de la Motilidad Ocular , Ratas , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Alzheimers Dement ; 19(1): 79-96, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278341

RESUMEN

INTRODUCTION: Identifying CSF-based biomarkers for the ß-amyloidosis that initiates Alzheimer's disease (AD) could provide inexpensive and dynamic tests to distinguish AD from normal aging and predict future cognitive decline. METHODS: We developed immunoassays specifically detecting all C-terminal variants of secreted amyloid ß-protein and identified a novel biomarker, the Aß 37/42 ratio, that outperforms the canonical Aß42/40 ratio as a means to evaluate the γ-secretase activity and brain Aß accumulation. RESULTS: We show that Aß 37/42 can distinguish physiological and pathological status in (1) presenilin-1 mutant vs wild-type cultured cells, (2) AD vs control brain tissue, and (3) AD versus cognitively normal (CN) subjects in CSF, where 37/42 (AUC 0.9622) outperformed 42/40 (AUC 0.8651) in distinguishing CN from AD. DISCUSSION: We conclude that the Aß 37/42 ratio sensitively detects presenilin/γ-secretase dysfunction and better distinguishes CN from AD than Aß42/40 in CSF. Measuring this novel ratio alongside promising phospho-tau analytes may provide highly discriminatory fluid biomarkers for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Secretasas de la Proteína Precursora del Amiloide , Proteínas tau , Fragmentos de Péptidos , Disfunción Cognitiva/diagnóstico , Biomarcadores
10.
Proc Natl Acad Sci U S A ; 116(41): 20760-20769, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548371

RESUMEN

Microscopy of Lewy bodies in Parkinson's disease (PD) suggests they are not solely filamentous deposits of α-synuclein (αS) but also contain vesicles and other membranous material. We previously reported the existence of native αS tetramers/multimers and described engineered mutations of the αS KTKEGV repeat motifs that abrogate the multimers. The resultant excess monomers accumulate in lipid membrane-rich inclusions associated with neurotoxicity exceeding that of natural familial PD mutants, such as E46K. Here, we use the αS "3K" (E35K+E46K+E61K) engineered mutation to probe the mechanisms of reported small-molecule modifiers of αS biochemistry and then identify compounds via a medium-throughput automated screen. αS 3K, which forms round, vesicle-rich inclusions in cultured neurons and causes a PD-like, l-DOPA-responsive motor phenotype in transgenic mice, was fused to YFP, and fluorescent inclusions were quantified. Live-cell microscopy revealed the highly dynamic nature of the αS inclusions: for example, their rapid clearance by certain known modulators of αS toxicity, including tacrolimus (FK506), isradipine, nilotinib, nortriptyline, and trifluoperazine. Our automated 3K cellular screen identified inhibitors of stearoyl-CoA desaturase (SCD) that robustly prevent the αS inclusions, reduce αS 3K neurotoxicity, and prevent abnormal phosphorylation and insolubility of αS E46K. SCD inhibition restores the E46K αS multimer:monomer ratio in human neurons, and it actually increases this ratio for overexpressed wild-type αS. In accord, conditioning 3K cells in saturated fatty acids rescued, whereas unsaturated fatty acids worsened, the αS phenotypes. Our cellular screen allows probing the mechanisms of synucleinopathy and refining drug candidates, including SCD inhibitors and other lipid modulators.


Asunto(s)
Cuerpos de Inclusión/efectos de los fármacos , Lípidos/análisis , Mutación , Neuroblastoma/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Estearoil-CoA Desaturasa/antagonistas & inhibidores , alfa-Sinucleína/química , Animales , Línea Celular , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Ratones Transgénicos , Modelos Biológicos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Estearoil-CoA Desaturasa/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
11.
Hum Mol Genet ; 28(5): 718-735, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30371777

RESUMEN

Large-scale 'omic' studies investigating the pathophysiological processes that lead to Alzheimer's disease (AD) dementia have identified an increasing number of susceptibility genes, many of which are poorly characterized and have not previously been implicated in AD. Here, we evaluated the utility of human induced pluripotent stem cell-derived neurons and astrocytes as tools to systematically test AD-relevant cellular phenotypes following perturbation of candidate genes identified by genome-wide studies. Lentiviral-mediated delivery of shRNAs was used to modulate expression of 66 genes in astrocytes and 52 genes in induced neurons. Five genes (CNN2, GBA, GSTP1, MINT2 and FERMT2) in neurons and nine genes (CNN2, ITGB1, MINT2, SORL1, VLDLR, NPC1, NPC2, PSAP and SCARB2) in astrocytes significantly altered extracellular amyloid-ß (Aß) levels. Knockdown of AP3M2, CNN2, GSTP1, NPC1, NPC2, PSAP and SORL1 reduced interleukin-6 levels in astrocytes. Only knockdown of FERMT2 led to a reduction in the proportion of TAU that is phosphorylated. Further, CRISPR-Cas9 targeting of FERMT2 in both familial AD (fAD) and fAD-corrected human neurons validated the findings of reduced extracellular Aß. Interestingly, FERMT2 reduction had no effect on the Aß42:40 ratio in corrected neurons and a reduction of phospho-tau, but resulted in an elevation in Aß42:40 ratio and no reduction in phospho-tau in fAD neurons. Taken together, this study has prioritized 15 genes as being involved in contributing to Aß accumulation, phosphorylation of tau and/or cytokine secretion, and, as illustrated with FERMT2, it sets the stage for further cell-type-specific dissection of the role of these genes in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Neuronas/metabolismo , Proteostasis , Proteínas tau/metabolismo , Biomarcadores , Encéfalo/metabolismo , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Técnicas de Silenciamiento del Gen , Marcación de Gen , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Fenotipo
12.
Development ; 144(15): 2730-2736, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28694255

RESUMEN

The molecular mechanism by which NSC number is controlled in the neurogenic regions of the adult brain is not fully understood but it has been shown that vascular niche signals regulate neural stem cell (NSC) quiescence and growth. Here, we have uncovered a role for soluble amyloid precursor protein (sAPP) as a vascular niche signal in the subventricular zone (SVZ) of the lateral ventricle of the adult mouse brain. sAPP suppresses NSC growth in culture. Further in vivo studies on the role of APP in regulating NSC number in the SVZ clearly demonstrate that endothelial deletion of App causes a significant increase in the number of BrdU label-retaining NSCs in the SVZ, whereas NSC/astrocyte deletion of App has no detectable effect on the NSC number. Taken together, these results suggest that endothelial APP functions as a vascular niche signal that negatively regulates NSC growth to control the NSC number in the SVZ.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Células-Madre Neurales/citología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Citometría de Flujo , Inmunohistoquímica , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicho de Células Madre/genética , Nicho de Células Madre/fisiología
13.
Acta Neuropathol ; 139(3): 503-526, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31853635

RESUMEN

Neurodegenerative diseases are an enormous public health problem, affecting tens of millions of people worldwide. Nearly all of these diseases are characterized by oligomerization and fibrillization of neuronal proteins, and there is great interest in therapeutic targeting of these aggregates. Here, we show that soluble aggregates of α-synuclein and tau bind to plate-immobilized PrP in vitro and on mouse cortical neurons, and that this binding requires at least one of the same N-terminal sites at which soluble Aß aggregates bind. Moreover, soluble aggregates of tau, α-synuclein and Aß cause both functional (impairment of LTP) and structural (neuritic dystrophy) compromise and these deficits are absent when PrP is ablated, knocked-down, or when neurons are pre-treated with anti-PrP blocking antibodies. Using an all-human experimental paradigm involving: (1) isogenic iPSC-derived neurons expressing or lacking PRNP, and (2) aqueous extracts from brains of individuals who died with Alzheimer's disease, dementia with Lewy bodies, and Pick's disease, we demonstrate that Aß, α-synuclein and tau are toxic to neurons in a manner that requires PrPC. These results indicate that PrP is likely to play an important role in a variety of late-life neurodegenerative diseases and that therapeutic targeting of PrP, rather than individual disease proteins, may have more benefit for conditions which involve the aggregation of more than one protein.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Priones/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Ratones , Unión Proteica
14.
Ann Neurol ; 84(1): 78-88, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29908079

RESUMEN

OBJECTIVE: Previous gene expression analysis identified a network of coexpressed genes that is associated with ß-amyloid neuropathology and cognitive decline in older adults. The current work targeted influential genes in this network with quantitative proteomics to identify potential novel therapeutic targets. METHODS: Data came from 834 community-based older persons who were followed annually, died, and underwent brain autopsy. Uniform structured postmortem evaluations assessed the burden of ß-amyloid and other common age-related neuropathologies. Selected reaction monitoring quantified cortical protein abundance of 12 genes prioritized from a molecular network of aging human brain that is implicated in Alzheimer's dementia. Regression and linear mixed models examined the protein associations with ß-amyloid load and other neuropathological indices as well as cognitive decline over multiple years preceding death. RESULTS: Average age at death was 88.6 years. Overall, 349 participants (41.9%) had Alzheimer's dementia at death. A higher level of PLXNB1 abundance was associated with more ß-amyloid load (p = 1.0 × 10-7 ) and higher PHFtau tangle density (p = 2.3 × 10-7 ), and the association of PLXNB1 with cognitive decline is mediated by these known Alzheimer's disease pathologies. On the other hand, higher IGFBP5, HSPB2, and AK4 and lower ITPK1 levels were associated with faster cognitive decline, and, unlike PLXNB1, these associations were not fully explained by common neuropathological indices, suggesting novel mechanisms leading to cognitive decline. INTERPRETATION: Using targeted proteomics, this work identified cortical proteins involved in Alzheimer's dementia and begins to dissect two different molecular pathways: one affecting ß-amyloid deposition and another affecting resilience without a known pathological footprint. Ann Neurol 2018;83:78-88.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/metabolismo , Autopsia , Trastornos del Conocimiento/etiología , Proteínas de Unión al ADN , Femenino , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Pruebas Neuropsicológicas , Mapas de Interacción de Proteínas , Proteoma/genética , Receptores de Superficie Celular/metabolismo , Características de la Residencia
15.
J Neurosci ; 37(49): 11947-11966, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29101243

RESUMEN

Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD) and several theories have been advanced to explain the relationship. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid ß-protein (Aß), self-associates to form soluble aggregates that impair synaptic and network activity. Here, we used the most disease-relevant form of Aß, protein isolated from AD brain. Using this material, we show that the synaptotoxic effects of Aß depend on expression of APP and that the Aß-mediated impairment of synaptic plasticity is accompanied by presynaptic effects that disrupt the excitatory/inhibitory (E/I) balance. The net increase in the E/I ratio and inhibition of plasticity are associated with Aß localizing to synapses and binding of soluble Aß aggregates to synapses requires the expression of APP. Our findings indicate a role for APP in AD pathogenesis beyond the generation of Aß and suggest modulation of APP expression as a therapy for AD.SIGNIFICANCE STATEMENT Here, we report on the plasticity-disrupting effects of amyloid ß-protein (Aß) isolated from Alzheimer's disease (AD) brain and the requirement of amyloid precursor protein (APP) for these effects. We show that Aß-containing AD brain extracts block hippocampal LTP, augment glutamate release probability, and disrupt the excitatory/inhibitory balance. These effects are associated with Aß localizing to synapses and genetic ablation of APP prevents both Aß binding and Aß-mediated synaptic dysfunctions. Our results emphasize the importance of APP in AD and should stimulate new studies to elucidate APP-related targets suitable for pharmacological manipulation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/biosíntesis , Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/metabolismo , Sinapsis/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/deficiencia , Animales , Encéfalo/patología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Unión Proteica/fisiología , Sinapsis/patología
16.
Int J Mol Sci ; 19(3)2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29495441

RESUMEN

Progressive cerebral accumulation of tau aggregates is a defining feature of Alzheimer's disease (AD). A popular theory that seeks to explain the apparent spread of neurofibrillary tangle pathology proposes that aggregated tau is passed from neuron to neuron. Such a templated seeding process requires that the transferred tau contains the microtubule binding repeat domains that are necessary for aggregation. While it is not clear how a protein such as tau can move from cell to cell, previous reports have suggested that this may involve extracellular vesicles (EVs). Thus, measurement of tau in EVs may both provide insights on the molecular pathology of AD and facilitate biomarker development. Here, we report the use of sensitive immunoassays specific for full-length (FL) tau and mid-region tau, which we applied to analyze EVs from human induced pluripotent stem cell (iPSC)-derived neuron (iN) conditioned media, cerebrospinal fluid (CSF), and plasma. In each case, most tau was free-floating with a small component inside EVs. The majority of free-floating tau detected by the mid-region assay was not detected by our FL assays, indicating that most free-floating tau is truncated. Inside EVs, the mid-region assay also detected more tau than the FL assay, but the ratio of FL-positive to mid-region-positive tau was higher inside exosomes than in free solution. These studies demonstrate the presence of minute amounts of free-floating and exosome-contained FL tau in human biofluids. Given the potential for FL tau to aggregate, we conclude that further investigation of these pools of extracellular tau and how they change during disease is merited.


Asunto(s)
Vesículas Extracelulares/metabolismo , Neuronas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Apolipoproteínas E/genética , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Diferenciación Celular , Disfunción Cognitiva/sangre , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/metabolismo , Exosomas/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Neuronas/citología , Proteínas tau/líquido cefalorraquídeo
17.
J Neurosci ; 36(5): 1730-46, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26843653

RESUMEN

Secreted factors play a central role in normal and pathological processes in every tissue in the body. The brain is composed of a highly complex milieu of different cell types and few methods exist that can identify which individual cells in a complex mixture are secreting specific analytes. By identifying which cells are responsible, we can better understand neural physiology and pathophysiology, more readily identify the underlying pathways responsible for analyte production, and ultimately use this information to guide the development of novel therapeutic strategies that target the cell types of relevance. We present here a method for detecting analytes secreted from single human induced pluripotent stem cell (iPSC)-derived neural cells and have applied the method to measure amyloid ß (Aß) and soluble amyloid precursor protein-alpha (sAPPα), analytes central to Alzheimer's disease pathogenesis. Through these studies, we have uncovered the dynamic range of secretion profiles of these analytes from single iPSC-derived neuronal and glial cells and have molecularly characterized subpopulations of these cells through immunostaining and gene expression analyses. In examining Aß and sAPPα secretion from single cells, we were able to identify previously unappreciated complexities in the biology of APP cleavage that could not otherwise have been found by studying averaged responses over pools of cells. This technique can be readily adapted to the detection of other analytes secreted by neural cells, which would have the potential to open new perspectives into human CNS development and dysfunction. SIGNIFICANCE STATEMENT: We have established a technology that, for the first time, detects secreted analytes from single human neurons and astrocytes. We examine secretion of the Alzheimer's disease-relevant factors amyloid ß (Aß) and soluble amyloid precursor protein-alpha (sAPPα) and present novel findings that could not have been observed without a single-cell analytical platform. First, we identify a previously unappreciated subpopulation that secretes high levels of Aß in the absence of detectable sAPPα. Further, we show that multiple cell types secrete high levels of Aß and sAPPα, but cells expressing GABAergic neuronal markers are overrepresented. Finally, we show that astrocytes are competent to secrete high levels of Aß and therefore may be a significant contributor to Aß accumulation in the brain.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Astrocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Análisis de la Célula Individual/métodos , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/análisis , Animales , Astrocitos/química , Células CHO , Cricetinae , Cricetulus , Femenino , Humanos , Células Madre Pluripotentes Inducidas/química , Masculino , Neuronas/química
18.
J Neurosci ; 35(30): 10851-65, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26224867

RESUMEN

Recent evidence suggests that tau aggregation may spread via extracellular release and subsequent uptake by synaptically connected neurons, but little is known about the processes by which tau is released or the molecular forms of extracellular tau. To gain insight into the nature of extracellular tau, we used highly sensitive ELISAs, which, when used in tandem, are capable of differentiating between full-length (FL) tau, mid-region-bearing fragments, and C-terminal (CT) fragments. We applied these assays to the systematic study of the conditioned media of N2a cells, induced pluripotent stem cell-derived human cortical neurons, and primary rat cortical neurons, each of which was carefully assessed for viability. In all three neuronal models, the bulk of extracellular tau was free-floating and unaggregated and <0.2% was encapsulated in exosomes. Although most intracellular tau was FL, the majority of extracellular tau was CT truncated and appeared to be released both actively by living neurons and passively by dead cells. In contrast, only a small amount of extracellular tau was aggregation-competent tau (i.e., contained the microtubule-binding regions) and this material appears to be released solely due to a low level of cell death that occurs in all cell culture systems. Importantly, amyloid ß-protein (Aß)-induced neuronal compromise significantly increased the quantity of all forms of extracellular tau, but the presence of Aß before detectable cell compromise did not increase extracellular tau. Collectively, these results suggest that factors that induce neuronal death are likely to be necessary to initiate the extracellular spread of tau aggregation. SIGNIFICANCE STATEMENT: Recent studies suggest that the transfer of tau between neurons underlies the characteristic spatiotemporal progression of neurofibrillary pathology. We searched for tau in the conditioned medium of N2a cells, induced pluripotent stem cell-derived human cortical neurons, and primary rat cortical neurons and analyzed the material present using four different tau ELISAs. We demonstrate that the majority of tau released from healthy neurons is C-terminally truncated and lacks the microtubule-binding region (MTBR) thought necessary for self-aggregation. A small amount of MTBR-containing tau is present outside of cells, but this appears to be solely due to cell death. Therefore, if propagation of tau aggregation is mediated by extracellular tau, our findings suggest that neuronal compromise is required to facilitate this process.


Asunto(s)
Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Animales , Muerte Celular/fisiología , Línea Celular , Medios de Cultivo Condicionados/química , Ensayo de Inmunoadsorción Enzimática , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Ratas
19.
Hum Mol Genet ; 23(13): 3523-36, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24524897

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by extracellular plaques containing amyloid ß (Aß)-protein and intracellular tangles containing hyperphosphorylated Tau protein. Here, we describe the generation of inducible pluripotent stem cell lines from patients harboring the London familial AD (fAD) amyloid precursor protein (APP) mutation (V717I). We examine AD-relevant phenotypes following directed differentiation to forebrain neuronal fates vulnerable in AD. We observe that over differentiation time to mature neuronal fates, APP expression and levels of Aß increase dramatically. In both immature and mature neuronal fates, the APPV717I mutation affects both ß- and γ-secretase cleavage of APP. Although the mutation lies near the γ-secretase cleavage site in the transmembrane domain of APP, we find that ß-secretase cleavage of APP is elevated leading to generation of increased levels of both APPsß and Aß. Furthermore, we find that this mutation alters the initial cleavage site of γ-secretase, resulting in an increased generation of both Aß42 and Aß38. In addition to altered APP processing, an increase in levels of total and phosphorylated Tau is observed in neurons with the APPV717I mutation. We show that treatment with Aß-specific antibodies early in culture reverses the phenotype of increased total Tau levels, implicating altered Aß production in fAD neurons in this phenotype. These studies use human neurons to reveal previously unrecognized effects of the most common fAD APP mutation and provide a model system for testing therapeutic strategies in the cell types most relevant to disease processes.


Asunto(s)
Enfermedad de Alzheimer/mortalidad , Péptidos beta-Amiloides/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Humanos , Neuronas/citología , Neuronas/metabolismo , Proteínas tau/genética
20.
Development ; 139(21): 3986-96, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22992957

RESUMEN

Neuronal precursor cell migration in the developing mammalian brain is a complex process requiring the coordinated interaction of numerous proteins. We have recently shown that amyloid precursor protein (APP) plays a role in migration into the cortical plate through its interaction with two cytosolic signaling proteins, disabled 1 (DAB1) and disrupted in schizophrenia 1 (DISC1). In order to identify extracellular factors that may signal through APP to regulate migration, we performed an unbiased mass spectrometry-based screen for factors that bind to the extracellular domain of APP in the rodent brain. Through this screen, we identified an interaction between APP and pancortins, proteins expressed throughout the developing and mature cerebral cortex. Via co-immunoprecipitation, we show that APP interacts with all four of the mammalian pancortin isoforms (AMY, AMZ, BMY, BMZ). We demonstrate that the BMZ and BMY isoforms of pancortin can specifically reduce ß-secretase- but not α-secretase-mediated cleavage of endogenous APP in cell culture, suggesting a biochemical consequence of the association between pancortins and APP. Using in utero electroporation to overexpress and knock down specific pancortin isoforms, we reveal a novel role for pancortins in migration into the cortical plate. Interestingly, we observe opposing roles for alternate pancortin isoforms, with AMY overexpression and BMZ knock down both preventing proper migration of neuronal precursor cells. Finally, we show that BMZ can partially rescue a loss of APP expression and that APP can rescue effects of AMY overexpression, suggesting that pancortins act in conjunction with APP to regulate entry into the cortical plate. Taken together, these results suggest a biochemical and functional interaction between APP and pancortins, and reveal a previously unidentified role for pancortins in mammalian cortical development.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Western Blotting , Línea Celular , Movimiento Celular/genética , Corteza Cerebral/metabolismo , Electroporación , Proteínas de la Matriz Extracelular/genética , Glicoproteínas/genética , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA