Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Metabolomics ; 19(3): 16, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36892715

RESUMEN

INTRODUCTION: Compared to synthetic herbicides, natural products with allelochemical properties can inhibit weed germination, aiding agricultural output with less phytotoxic residue in water and soil. OBJECTIVES: To identify natural product extracts of three Cassia species; C. javanica, C. roxburghii, and C. fistula and to investigate the possible phytotoxic and allelopathic potential. METHODS: Allelopathic activity of three Cassia species extracts was evaluated. To further investigate the active constituents, untergated metabolomics using UPLC-qTOF-MS/MS and ion-identity molecular networking (IIMN) approach was performed to identify and determine the distribution of metabolites in different Cassia species and plant parts. RESULTS: We observed in our study that the plant extracts showed consistent allelopathic activity against seed germination (P < 0.05) and the inhibition of shoot and root development of Chenopodium murale in a dose-dependent manner. Our comprehensive study identified at least 127 compounds comprising flavonoids, coumarins, anthraquinones, phenolic acids, lipids, and fatty acid derivatives. We also report the inhibition of seed germination, shoot growth, and root growth when treated with enriched leaf and flower extracts of C. fistula, and C. javanica, and the leaf extract of C. roxburghii. CONCLUSION: The present study recommends further evaluation of Cassia extracts as a potential source of allelopathic compounds in agricultural systems.


Asunto(s)
Cassia , Espectrometría de Masas en Tándem , Metabolómica , Germinación , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
Chem Biodivers ; 20(2): e202200918, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36602020

RESUMEN

In spite of tremendous efforts exerted in the management of COVID-19, the absence of specific treatments and the prevalence of delayed and long-term complications termed post-COVID syndrome still urged all concerned researchers to develop a potent inhibitor of SARS-Cov-2. The hydromethanolic extracts of different parts of E. mauritanica were in vitro screened for anti-SARS-Cov-2 activity. Then, using an integrated strategy of LC/MS/MS, molecular networking and NMR, the chemical profile of the active extract was determined. To determine the optimum target for these compounds, docking experiments of the active extract's identified compounds were conducted at several viral targets. The leaves extract showed the best inhibitory effect with IC50 8.231±0.04 µg/ml. The jatrophane diterpenes were provisionally annotated as the primary metabolites of the bioactive leaves extract based on multiplex of LC/MS/MS, molecular network, and NMR. In silico studies revealed the potentiality of the compounds in the most active extract to 3CLpro, where compound 20 showed the best binding affinity. Further attention should be paid to the isolation of various jatrophane diterpenes from Euphorbia and evaluating their effects on SARS-Cov-2 and its molecular targets.


Asunto(s)
COVID-19 , Diterpenos , Euphorbia , Estructura Molecular , Euphorbia/química , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , SARS-CoV-2 , Diterpenos/química , Extractos Vegetales/química
3.
Chem Biodivers ; 18(7): e2100238, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34033700

RESUMEN

Plants belonging to Euphorbia L. genus are considered very interesting from a medicinal point of view due to their diverse metabolites and bioactivities. The essential oil (EO) of Euphorbia mauritanica L. is not studied up to date. Therefore, the present study aimed to explore the chemical profile of this EO and evaluate its antioxidant, cytotoxic, and allelopathic potentialities. The EO was extracted from the whole plant via hydrodistillation and then, analyzed by gas chromatography/mass spectrometry (GC/MS). The correlation of E. mauritanica with the other Euphorbia plants was established using chemometric analysis. The antioxidant activity was determined based on scavenging of the free radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The anti-proliferation of the EO on the Hep G2 and MCF-7 cells was evaluated. Finally the allelopathic activity of the EO was assessed against the two noxious weeds, Dactyloctenium aegyptium and Urospermum picroides. Forty-one compounds were identified using GC/MS analysis, with an abundance of terpenoids (91.54 %) that were categorized into mono- (30.75 %), sesqui- (15.23 %), and diterpenes (45.56 %). Interestingly, the results revealed the preponderance of diterpenoid constituents although they are rarely found in the EOs of the plant kingdom. The major compounds were (3E)-cembrene A (18.66 %), verticiol (17.05 %), limonene (7.91 %), eucalyptol (7.26 %), α-pinene (5.61 %), neo-cembrene A (3.52 %), kaur-16-ene (3.24 %), and cembrene (3.09 %). The EO showed moderate antioxidant activity where it attained IC50 values of 83.34 and 64.21 µg mL-1 for DPPH and ABTS compared to 23.01 and 19.23 µg mL-1 for ascorbic acid as standard, respectively. The EO exhibited very weak cytotoxic effect on MCF-7 and Hep G2 cells. The EO showed significant allelopathic activities against the weeds D. aegyptium and U. picroides in a concentration-dependent manner. EO was found more effective against U. picroides than D. aegyptium with IC50 values of 0.79, 0.45, and 0.67 mg mL-1 and 1.17, 0.55, and 1.08 mg mL-1 for germination, root, and shoot growth, respectively. Due to the high content of diterpenes in E. mauritanica, further study is recommended for more characterization of pure forms of the identified diterpenes as well as evaluating their bioactivity either solely or synergistically.


Asunto(s)
Alelopatía/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Diterpenos/farmacología , Euphorbia/química , Aceites Volátiles/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diterpenos/química , Diterpenos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Picratos/antagonistas & inhibidores , Ácidos Sulfónicos/antagonistas & inhibidores , Células Tumorales Cultivadas
4.
Plants (Basel) ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611505

RESUMEN

In this study, flower and leaf extracts of Colvillea racemosa were considered a source of bioactive compounds. In this context, the objective of the study focused on investigating the anticancer potential as well as the phytochemical composition of both extracts. The extracts were analyzed by UPLC-ESI-QTOF-MS, and the bioactivity was tested using in vitro antioxidant assays (FRAP, DPPH, and ABTS) in addition to cytotoxic assays on non-small cell lung cancer cell line (A549). Our results clearly indicated the potent radical scavenging capacity of both extracts. Importantly, the flower extract exhibited a greater antioxidant capacity than the leaf extract. In terms of cytotoxic activity, leaf and flower extracts significantly inhibited cell viability with IC50 values of 17.0 and 17.2 µg/mL, respectively. The phytochemical characterization enabled the putative annotation of 42 metabolites, such as saccharides, phenolic acids, flavonoids, amino acids, and fatty acids. Among them, the flavonoid C-glycosides stand out due to their high relative abundance and previous reports on their anticancer bioactivity. For a better understanding of the bioactive mechanisms, four flavonoids (vitexin, kaempferol-3-O-rutinoside, luteolin, and isoorientin) were selected for molecular docking on hallmark protein targets in lung cancer as represented by γ-PI3K, EGFR, and CDK2 through in-silico studies. In these models, kaempferol-3-O-rutinoside and vitexin had the highest binding scores on γ-PI3K and CDK2, followed by isoorientin, so they could be highly responsible for the bioactive properties of C. racemosa extracts.

5.
Food Chem ; 404(Pt B): 134650, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36283320

RESUMEN

Hylocereus spp. known as dragon fruit is an exotic fruit that belongs to the Cactaceae family. LC-QTOF-MS and multivariate statistical tools were established to analyze differences in the composition of dragon fruit peel and pulp from Egypt, Germany, Philippines, and China. The α-glucosidase inhibitory effects of different extracts were carried out along with the anti-glycation end products (AGE) using BSA-fructose, BSA-methylglyoxal, and arginine-methylglyoxal assays. In addition, the total antioxidant capacity was investigated as a complementary mechanism to AGE formation. Principal component analysis revealed that dragon fruits from China and Egypt were the most distinct among all samples due to betalains content. Orthogonal projection to latent structures-discriminant analysis identified 16 compounds highly correlated to the antiglycation activity such as betanin, γ-aminobutyric acid, neobetanin, and portulacaxanthin II. Pulp extracts were more active than peels as inhibitors of α-glucosidase. While peels were more active as AGE formation inhibitors and as antioxidants.


Asunto(s)
Cactaceae , Hipoglucemiantes , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , alfa-Glucosidasas/metabolismo , Piruvaldehído/metabolismo , Quimiometría , Cactaceae/metabolismo , Frutas/química , Antioxidantes/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo
6.
Metabolites ; 13(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37512493

RESUMEN

Plants belonging to the Launaea genus have been extensively utilized ethnopharmacologically to treat a variety of diseases, including kidney disorders. Chromium is a common industrial pollutant that has been linked to kidney disease. The present work was designed for the investigation of the UPLC-QTOF-MS/MS metabolite profile of the L. mucronate ethanolic extract (LME), along with assessing the mechanistic protective actions of LME and its nano-silver formulation (LMNS) against K2Cr2O7-induced nephrotoxicity in rats. LMNE was successfully biosynthesized and confirmed using UV-Visible (UV-Vis) spectroscopy and transmission electron microscopy (TEM). The nephroprotective effects of LME and LMNE was assessed in rats exposed to potassium dichromate (K2Cr2O7, 15 mg/kg BW) to cause nephrotoxicity. LME and LMNS, separately, were administered twice daily for 14 days at doses of 200 and 400 mg/kg BW, respectively. The kidney function, catalase, UGT, Nrf2, PGE2, Cox-2, ERK, and MAPK levels in renal tissue were all assessed, along with histopathological examinations for exploring their ameliorative effects. Forty-five bioactive metabolites were annotated belonging to flavonoids, phenolic and organic acids, coumarins, and fatty acids. Metabolite profiling revealed that chlorogenic acid, apigenin, and luteolin glycosides were the main phenolics, with chlorogenic acid-O-hexoside reported for the first time in LME. The findings revealed that the serum kidney function indicators (urea and creatinine) were markedly elevated in K2Cr2O7-intoxicated rats. Furthermore, inflammatory indicators (COX-2 and PGE2), MAPK, and ERK were all markedly elevated in kidney tissue, whereas catalase, UGT, and Nrf2 levels were downregulated. Histological and immunohistochemical assays confirmed the toxic effects of K2Cr2O7 in the kidneys. In contrast, the administration of LME and LMNS prior to K2Cr2O7 considerably improved the architecture of the renal tissue, while also restoring levels of most biochemical markers. Functioning via the inhibition of the MAPK/ERK pathway, activating Nrf2, and modifying the antioxidant and metabolic enzymes, LME and LMNS exerted their nephroprotective effects against K2Cr2O7-induced toxicity.

7.
Sci Rep ; 13(1): 19887, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963988

RESUMEN

Pelargonium graveolens L'Hér is an important species of genus Pelargonium with an economic value. The unique rose scent of its oil is used in perfume and cosmetic industry. The oil is characterized by the presence of citronellol, geraniol and rose oxide. Fresh aerial parts of P. graveolens at GC-MS analysis of four seasons revealed that autumn constituted the highest yield of the oil. For the first time, optimization of the yield of extracted oil of P. graveolens was performed employing 3-level Box-Behnken design using 3-factors. The GC-MS analysis of the essential oil was performed for the 17-runs. The optimized extraction of the oil was performed employing numerical optimization and studied for antimicrobial, Minimum Inhibitory Concentration (MIC) and biofilm inhibitory activities. The 3 factors followed rank (plant material amount > water volume > NaCl percent in water), in their magnitude of effect on increasing yield of the oil. Increasing the plant material amount increased the yield of the oil by 6-folds compared to NaCl percent in water. The optimized yield of oil (4 ml) was obtained from extraction criteria (150 g of plant, 750 ml of water and 3.585% (26.85 g) of NaCl). Computational docking was performed to overcome the multi-drug resistant Gram-negative bacilli targeting undecaprenyl pyrophosphate synthase (UPPS). The optimized oil exhibited a promising inhibitory activity against Gram-negative bacteria (K. pneumonia and P. aeruginosa) with significant antibiofilm action (P < 0.05). Moreover, it exerted a synergistic effect when combined with various antibiotics (Cefoxitin, Cloxacillin, Oxacillin and Vancomycin) against MRSA clinical strains.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Pelargonium , Cloruro de Sodio , Aceites Volátiles/farmacología , Antiinfecciosos/farmacología , Agua , Pruebas de Sensibilidad Microbiana
8.
Sci Rep ; 12(1): 8829, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614139

RESUMEN

To the best of our knowledge, there have been no phytochemical studies concerning the wild plant Leontodon hispidulus Boiss. (Asteraceae). Optimization of the green extraction process of the plant aerial parts, identification of main phenolic compounds, evaluation of antioxidant, anti-inflammatory and anticancer activities of the optimized extract have been carried out. HPLC-analysis was performed using 95% ethanolic extract. 3-Level Box-Behnken Design was applied for optimization of extraction yield and total phenolic content using 3-factors (ethanol/water ratio, material/solvent ratio and extraction time). Antioxidant, anticancer and anti-inflammatory activities were evaluated by ABTS-assay, prostate and cervical carcinoma human cell lines and carrageenan-induced rat paw edema model, respectively. HPLC-analysis showed the presence of quercetin, rutin, kaempferol, chlorogenic and ρ-coumaric acids. Increasing both ethanol/water ratio and material/solvent ratio decreased the yield, while, it increased by prolongation of the extraction time. High material/solvent ratio increased the phenolic content. The optimized extract showed high total phenolic content (104.18 µg/mg) using 201 ml of 74.5% ethanol/water at 72 h and good biological activities. Antioxidant activity was found to be 41.89 mg Trolox-equivalent/gm, with 80% free radicals inhibition. For anti-inflammatory activity, 100 mg/kg of the extract inhibited the edema in rats by 83.5% after 4 h of carrageenan injection as compared to 81.7% inhibition by indomethacin. Prostate carcinoma cell line was more sensitive to the anticancer activity of the extract than cervical carcinoma cell line (IC50 = 16.5 and 23 µg/ml, respectively). The developed extraction procedure proved to be efficient in enriching the extract with phenolic compounds with promising anticancer, anti-inflammatory and antioxidant activities.


Asunto(s)
Asteraceae , Carcinoma , Animales , Antiinflamatorios/química , Antioxidantes/química , Asteraceae/química , Carragenina/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Etanol/efectos adversos , Masculino , Fenoles/análisis , Extractos Vegetales/química , Ratas , Solventes/efectos adversos , Agua
9.
Sci Rep ; 12(1): 4966, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322072

RESUMEN

Seven avocado "Persea americana" seeds belonging to 4 varieties, collected from different localities across the world, were profiled using HPLC-MS/MS and GC/MS to explore the metabolic makeup variabilities and antidiabetic potential. For the first time, 51 metabolites were tentatively-identified via HPLC-MS/MS, belonging to different classes including flavonoids, biflavonoids, naphthodianthrones, dihydrochalcones, phloroglucinols and phenolic acids while 68 un-saponified and 26 saponified compounds were identified by GC/MS analysis. The primary metabolic variabilities existing among the different varieties were revealed via GC/MS-based metabolomics assisted by unsupervised pattern recognition methods. Fatty acid accumulations were proved as competent, and varietal-discriminatory metabolites. The antidiabetic potential of the different samples was explored using in-vitro amylase and glucosidase inhibition assays, which pointed out to Gwen (KG) as the most potent antidiabetic sample. This could be attributed to its enriched content of poly-unsaturated fatty acids and polyphenolics. Molecular docking was then performed to predict the most promising phytoligands in KG variety to be posed as antidiabetic drug leads. The highest in-silico α-amylase inhibition was observed with chrysoeriol-4'-O-pentoside-7-O-rutinoside, apigenin-7-glucuronide and neoeriocitrin which might serve as potential drug leads for the discovery of new antidiabetic remedies.


Asunto(s)
Persea , Cromatografía Líquida de Alta Presión/métodos , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Metabolómica/métodos , Simulación del Acoplamiento Molecular , Persea/metabolismo , Extractos Vegetales/metabolismo , Espectrometría de Masas en Tándem/métodos
10.
Phytochemistry ; 198: 113154, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35245525

RESUMEN

Three undescribed diterpenes including two ent-abietanes, euphomauritanol A, and euphomauritanol B, and one jatrophane, euphomauritanophane A, in addition to eight previously described metabolites were isolated from the MeOH-CH2Cl2 (1:1) extract of the Euphorbia mauritanica. The chemical structures of isolates were established based on the spectroscopic means including FT-IR, HRMS, 1D and 2D NMR. The absolute stereochemistry of the undescribed diterpenes was deduced by experimental and calculated TDDFT-electronic circular dichroism (ECD). The anti-proliferative effects of the isolated diterpenes were evaluated against B16-BL6, Hep G2, and Caco-2. The euphomauritanol A, euphomauritanol B, and euphomauritanophane A significantly inhibited the growth of murine melanoma B16-BL6 cell lines with IC50 10.28, 20.22, and 38.81 µM, respectively with no responses against the other cells. These activities were rationalized by molecular docking of the active compounds in BRAFV600E and MEK1 active sites. Moreover, the in-silico pharmacokinetics predictions by Swiss ADME revealed that the active compounds possessed favorable oral bioavailability and drug-likeness properties.


Asunto(s)
Diterpenos , Euphorbia , MAP Quinasa Quinasa 1 , Melanoma , Proteínas Proto-Oncogénicas B-raf , Animales , Células CACO-2 , Diterpenos/química , Diterpenos/farmacología , Egipto , Euphorbia/química , Células Hep G2 , Humanos , MAP Quinasa Quinasa 1/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/enzimología , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas Proto-Oncogénicas B-raf/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
11.
Sci Rep ; 11(1): 16868, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413416

RESUMEN

Flower based nanoparticles has gained a special attention as a new sustainable eco-friendly avenue. Rosa floribunda charisma belongs to modern roses with bright yellow, red flowers with marvellous rose scent. Different methods were used for the extraction of its floral scent such as hexane, microwave, and solid-phase micro-extraction. The latter was the most efficient method for the extraction of phenyl ethyl alcohol, the unique scent of roses. In the current study, magnesium nanoparticles (RcNps) have been synthesized using Rosa floribunda charisma petals that have privileges beyond chemical and physical routs. RcNps formation was confirmed using UV-Visible (UV-Vis) Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), High Resolution-Transmission Electron Microscope (HR-TEM), Field Emission-Scanning Electron Microscope (FE-SEM), Energy dispersive X-ray (EDX), X-ray Diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS). HR-TEM images detected the polyhedral shape of RcNps with a diverse size ranged within 35.25-55.14 nm. The resulting RcNps exhibited a high radical scavenging activity illustrated by inhibition of superoxide, nitric oxide, hydroxyl radical and xanthine oxidase by by IC50 values 26.2, 52.9, 31.9 and 15.9 µg/ml respectively as compared to ascorbic acid. Furthermore, RcNps at concentration of 100 µg/ml significantly reduced xanthine oxidase activity (15.9 ± 0.61 µg/ml) compared with ascorbic acid (12.80 ± 0.32 µg/ml) with p < 0.05. Moreover, RcNps showed an excellent antiaging activity demonstrated by inhibition of collagenase, elastase, hyaluronidase and tyrosinase enzymes in a dose-dependent manner with IC50 values of 58.7 ± 1.66 µg/ml, 82.5 ± 2.93 µg/ml, 191.4 ± 5.68 µg/ml and 158.6 ± 5.20 µg/ml as compared to EGCG respectively. RcNps also, exhibited a promising antibacterial activity against three skin pathogens delineate a significant threat to a public health, as Staphylococcus epidermidis, Streptococcus pyogenes, and Pseudomonas aeruginosa with MIC of 15.63, 7.81, 31.25 µg/ml as compared to ciprofloxacin (7.81, 3.9 and 15.63 µg/ml). Moreover, RcNps suppressed the formation of biofilms with minimum biofilm inhibitory concentrations 1.95, 1.95, 7.81 µg/ml against the fore mentioned strains, respectively. Overall, our findings indicate that Rosa floribunda nanoparticles could be used as a leading natural source in skin care cosmetic industry.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antioxidantes/farmacología , Biopelículas/efectos de los fármacos , Tecnología Química Verde , Magnesio/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Rosa/química , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Odorantes , Espectroscopía de Fotoelectrones , Pseudomonas aeruginosa/efectos de los fármacos , Microextracción en Fase Sólida , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos Orgánicos Volátiles/análisis
12.
Saudi J Biol Sci ; 27(6): 1649-1658, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32489307

RESUMEN

Cactaceae plant family comprises over 130 genera and 2000 species of succulent flowering plants. The genera Mammillaria and Notocactus (Parodia), which have medicinal and nutritional applications as well as aesthetic appeal, are considered to be among the major genera of the family. Several species of both genera show morphological and chemical similarities and diversities according to environmental conditions and genotypes. Here, we assessed the genetic relationships of nine species belonging to two major genera Mammillaria and Notocactus under the family Cactaceae, using two modern gene-targeting marker techniques, the Start Codon Targeted (SCoT) Polymorphism and the Conserved DNA-Derived Polymorphism (CDDP). Besides, we screened the various phytochemicals and evaluated the antioxidant activities of the nine species of cacti. Five out of the 10 SCoT and eight CDDP primers used to screen genetic variations within the nine species yielded species-specific reproducible bands. The entire 156 loci were detected, of which 107 were polymorphic, 26 were monomorphic, and 23 were unique loci. The nine species were categorized into two groups based on the dendrogram and similarity matrix. Phytochemical profiling revealed that sterols, triterpenes, flavonoids, and tannins were found in all the tested species. Additionally, two Notocactus species (N. shlosserii and N. roseoluteus) and one Mammillaria species (M. spinosissima) revealed a considerable antioxidant activity. Our results demonstrated that gene-targeting marker techniques were highly powerful tools for the classification and characterization of the nine investigated species, despite displaying high similarities at both morphological and phytochemical levels.

13.
J Ethnopharmacol ; 231: 262-274, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30458280

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ficus is an important commercial crop not only for its nutritive value but also, for its medicinal value. Several Ficus species have been traditionally used in the Egypt, Indian and Chinese as carminative, astringent, antibacterial, hepatoprotective, and hypolipidemic agents. AIM OF THE STUDY: To standardize and compare the possible hepatoprotective potential of the ethanolic extract of leaves of five tested Ficus species namely: Ficus mysorensis Roth ex Roem. & Schult, Ficus pyriformis Hook. & Arn., Ficus auriculata Lour., Ficus trigonata L., and Ficus spragueana Mildbr. & Burret in the intrahepatic cholestasis rat model induced by 17α-Ethinylestradiol (EE) and to explore the mechanism of action with respect to their phytochemical constituents. MATERIALS AND METHODS: Determination of the total phenolic and flavonoid contents, chromatographic examination and acute oral toxicity test were performed on the tested Ficus extracts. Animals were divided into 8 groups. Group 1, served as control for 2 weeks. Group 2, untreated cholestatic rats. Groups 3-8, pretreated with Ficus extracts (100 mg/Kg/day, p.o) or ursodeoxycholic acid (as reference drug) for 2 weeks and injected by EE in the last 5 days. Serum liver function test, 5'-nucleotidase (5'-N), total bile acids (TBA), total cholesterol (T.C) and phospholipids were assayed. Also, hepatic Na+/K+-ATPase, nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), hepatocyte growth factor (HGF), hemeoxygenase-1 (HO-1), and markers of oxidative stress were investigated. Furthermore, molecular docking study was performed to explore the ability of the major constituents of Ficus to interact with Farnesoid X receptor (FXR). RESULTS: Four phenolic compounds (gallic, chlorogenic acid, caffeic acids and rutin) were identified. Chlorogenic acid and rutin represented the major constituents of Ficus extracts. Simultaneous administration of Ficus extracts with EE effectively: i- preserved liver function, TBA, T.C and phospholipids, ii- suppressed the pro-inflammatory cytokines (NF-κB and TNF-α), iii- enhanced hepatic regeneration (HGF) and antioxidant defense system. Furthermore, molecular docking reveals that rutin and chlorogenic acid effectively act as FXR agonists. CONCLUSION: Among the tested extracts, Ficus spragueana Mildbr. & Burret enriched with phenolics exhibited a pronounced hepatoprotective activity and may provide a new therapeutic approach for estrogen-induced cholestasis.


Asunto(s)
Colestasis Intrahepática/tratamiento farmacológico , Ficus , Fitoquímicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Sustancias Protectoras/uso terapéutico , Animales , Colestasis Intrahepática/metabolismo , Modelos Animales de Enfermedad , Femenino , Ficus/química , Hígado/efectos de los fármacos , Hígado/metabolismo , FN-kappa B/metabolismo , Fitoquímicos/análisis , Fitoquímicos/farmacología , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA