Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Water Sci Technol ; 77(5-6): 1558-1569, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29595158

RESUMEN

The aim of this study was to investigate membrane synthesis by interfacial polymerization methods, the application of synthesized nano-composite membrane for natural organic matters (NOMs) removal from water, evaluation of fouling mechanism and antifouling properties. Polysulfone (PSf) was selected as a porous ultrafiltration membrane support and interfacial polymerization was done using tannic acid (TA) and Trimesoyl chloride (TMC) with central composite design (CCD). The effects of TA and TMC monomer concentrations, reaction time and post treatment temperature was evaluated. The synthesized membrane was characterized by field emission scanning electron microscope (FESEM), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and water contact angle. Based on the results, the optimum conditions for synthesizing nano-composite were: TA concentration of 0.27 g/L, TMC concentration of 0.22 g/L, reaction time of 68.29 min and temperature of 25.23 °C. The predicted optimum operational conditions were a NOM concentration of 6.429 mg/L; time of 10.931 min and applied pressure of 1.039 bar. The potential applications of the synthesized nano-composite membranes with interfacial polymerization can enhance water treatment.


Asunto(s)
Membranas Artificiales , Nanocompuestos , Polímeros/química , Sulfonas/química , Microscopía de Fuerza Atómica , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Ultrafiltración , Agua , Contaminantes Químicos del Agua , Purificación del Agua
2.
Malays J Med Sci ; 23(3): 86-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27418874

RESUMEN

Activated sludge process is a biological process that is widely used in the domestic and industrial wastewater treatment in over the world. The foam formation is often reported in wastewater treatment plants which are related to this process. Some operational problems can be created by foaming, such as effluent quality deteriorates, the creation of malodorous, increased time requirements in order to plant maintenance, and in extreme cases, hazardous working conditions resulting from foam spilling out of the aeration basin and as well as increased in operational costs. There are different ways to overcome this problem, such as reduce air flows into the aeration basin, reduction in the grease and oil content of the wastewater, surface and return activated sludge (RAS) chlorination, anoxic and anaerobic selectors, solid retention time (SRT) control and antifoams and organic polymer addition. On the other hand, rapid and accurate identification of the foam causes is in the first step to control bulking and foaming. Foam problem is often created by filamentous bacteria, such as Nocardia and Gordonia species. This bacterium has a role important in activated sludge.

3.
Water Sci Technol ; 66(4): 754-60, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22766863

RESUMEN

In this study, treatment of slaughterhouse wastewater by electrocoagulation was investigated in batch system using Fe electrodes. The effect of various variables such as electrode number, current density and operating time was tested. Pollutant removal efficiency increased with increasing electrode number and operating time. The biochemical oxygen demand (BOD(5))(,) chemical oxygen demand (COD), total suspended solid (TSS), and total nitrogen (TN) removal efficiencies using eight electrodes at a contact time of 50 min and a current density of 10 A/m(2) were 66, 62, 60, and 56%, respectively. Higher electrode numbers will allow shorter operating times to achieve certain removal efficiencies. Also, removal efficiencies increased by increasing the current density; the highest removal efficiencies of BOD(5,) COD, TSS, and TN at a contact time of 50 min and a current density of 25 A/m(2) were 97, 93, 81, and 84%, respectively. The results also show that the reactor pH varies directly with the current density; at 25 A/m(2), the reactor pH increased from an initial value of 7.1 to 7.7 after 50 min. The experimental results showed that the kinetics of BOD(5), COD, TSS and TN removal could be fitted adequately using a first order kinetic model (higher R(2)).


Asunto(s)
Mataderos , Hierro/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Análisis de la Demanda Biológica de Oxígeno , Electroquímica , Electrodos , Concentración de Iones de Hidrógeno , Cinética , Nitrógeno/análisis , Nitrógeno/química , Contaminantes Químicos del Agua/análisis
4.
Sci Rep ; 12(1): 20954, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470913

RESUMEN

Diclofenac (DCF) as a non-steroidal pharmaceutical has been detected in aquatic samples more than other compounds due to its high consumption and limited biodegradability. In this study, ultrasound waves were applied along with an advanced nano-Fenton process (US/ANF) to remove DCF, and subsequently, the synergistic effect was determined. Before that, the efficiency of the US and ANF processes was separately studied. The central composite design was used as one of the most applicable responses surface method techniques to determine the main and interactive effect of the factors influencing DCF removal efficiency in US/ANF. The mean DCF removal efficiency under different operational conditions and at the time of 1-10 min was obtained to be about 4%, 83%, and 95% for the US, ANF, and US/ANF, respectively. Quadratic regression equations for two frequencies of US were developed using multiple regression analysis involving main, quadratic, and interaction effects. The optimum condition for DCF removal was obtained at time of 8.17 min, H/F of 10.5 and DCF concentration of 10.12 at 130 kHz US frequency. The synergy index values showed a slight synergistic effect for US/ANF (1.1). Although the synergistic effect of US/ANF is not very remarkable, it can be considered as a quick and efficient process for the removal of DCF from wastewater with a significant amount of mineralization.


Asunto(s)
Diclofenaco , Contaminantes Químicos del Agua , Sonicación , Aguas Residuales
5.
Environ Sci Pollut Res Int ; 28(14): 18201-18215, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33410018

RESUMEN

A novel adsorbent with excellent adsorptive properties for fluoride was prepared through a green and cheap synthesis route. Populus caspica pruning wastes, a cheap agri-waste material, were reduced to multi-layer green graphene (MLG) and then post-modified to aluminum/iron modified multi-layer green graphene (AMLG and IMLG). Batch experiments revealed the effect of pH (3-11), contact time (0.5-12 h), and initial fluoride concentration (5-40 mg/L). The conversion of raw material to MLG increased the specific surface area about 120 times (from 4 to 475 m2/g). Furthermore, a significant improvement in zero points of charge (pHzpc) was attained for IMLG (7.1) and AMLG (8) compared with pristine MLG (4.3). Fluoride showed superior affinity to AMLG and IMLG compared with MLG. Fluoride removal increased gradually by pH from 3 to 8 and then decreased sharply up to pH 11. The study of process dynamics demonstrated the monolayer fluoride adsorption onto AMLG and IMLG controlled by the chemisorptions. The highest predicted adsorption capacities based on the Langmuir model were 31.52, 47.01, and 53.76 mg/g for MLG, IMLG, and AMLG, respectively. Considering economic and technical feasibility presents AMLG and IMLG as a promising candidate against water contamination by elevated fluoride. Graphical abstract.


Asunto(s)
Agua Potable , Grafito , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Fluoruros , Concentración de Iones de Hidrógeno , Cinética , Árboles , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Pollut Res Int ; 28(1): 1006-1017, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32829432

RESUMEN

The objective of this work was to investigate the modification of soil contaminated with phenanthrene (PHE) by electro-kinetic remediation (EKR) process using response surface methodology (RSM). The soil sample was obtained from the subgrades (0-30 cm) of an area close to Shahroud City, Northeast of Iran. The effect of variables such as initial pH, voltage, electrolyte concentration, and reaction time on PHE removal was studied. Based on the results obtained from the central composite design (CCD) experiment, the highest and lowest amount of PHE removal was 97 and 20%, respectively. In this study, the variables A, B, C, AB, AC, and C2 with a p value < 0.05 were significant model terms and the parameter of the lack of fit was not significant (p value = 0.0745). Findings indicated that the "predicted R-squared" of 0.9670 was in reasonable agreement with the "adj R-squared" of 0.9857 and the plot of residual followed a normal distribution and approximately linear. Also, the kinetic rates of the removal PHE by the EKR process best fitted with a first-order kinetic model (R2: 0.926). Results of the investigation of the effective variables showed that in values of pH 3, time of 168 h, voltage of 3 V, and electrolyte concentration of 4 mg/L, the removal efficiency of PHE reached 96.6%. Graphical abstract.


Asunto(s)
Fenantrenos , Contaminantes del Suelo , Irán , Cinética , Suelo , Contaminantes del Suelo/análisis
7.
J Environ Health Sci Eng ; 18(2): 515-529, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33312580

RESUMEN

BACKGROUND: The aim of this study was to investigate the removal of Cr (VI) using Green-Graphene Nanosheets (GGN) synthesized from rice straw. METHODS: Synthesis of the GGN was optimized using response surface methodology and central composite design (CCD). The effect of two independent variables including KOH-to-raw rice ash (KOH/RRA) ratio and temperature on the specific surface area of the GGN was determined. To have better removal of Cr (VI), GGN was modified using the grafting amine group method. In the Cr (VI) removal process, the effects of four independent variables including initial Cr (VI) concentration, adsorbent dosage, contact time, and initial solution pH were studied. RESULTS: The results of this study showed that the optimum values of the KOH/RRA ratio and temperature for the preparation of GGN were 10.85 and 749.61 °C, respectively. The maximum amount of SSA obtained at optimum conditions for GGN was 551.14 ± 3.83 m 2 /g. The optimum conditions for Cr (VI) removal were 48.35 mg/L, 1.46 g/L, 44.30 min, and 6.87 for Cr (VI) concentration, adsorbent dosage, contact time, and pH, respectively. Based on variance analysis, the adsorbent dose was the most sensitive factor for Cr (VI) removal. Langmuir isotherm (R2 = 0.991) and Pseudo-second-order kinetic models (R2 = 0.999) were the best fit for the study results and the Q max was 138.89 mg/g. CONCLUSIONS: It can be concluded that the predicted conditions from the GGN synthesis model and the optimum conditions from the Cr (VI) removal model both agreed with the experimental findings.

8.
Artículo en Inglés | MEDLINE | ID: mdl-28649387

RESUMEN

BACKGROUND: In recent years the generation rate of construction and demolition waste (C&D) has significantly augmented. The aim of this study was to assessed the quality and quantity of construction and demolition waste in Tehran (capital of Iran). METHODS: Questionnaire methods were used for estimating the amount of generated C&D wastes national statistical data and typical waste generation data. In order to defining the composition of C&D waste, trucks were randomly selected and their wastes were separated and weighted. RESULTS: According to obtained results, about 82,646,051 m3 of C&D waste (average 16,529,210 m3 per year) were generated during 2011 to 2016 which only about 26% of them has been recycled. Mixing sand and cement, concrete, broken bricks and soil have the highest amount of the composition of C&D waste in Tehran that was 30, 19, 18 and 11%, respectively. Based on the results, about 2,784,158 t of the waste will generate in 2025 and this is approximately 122% higher than wastes generate in 2016. Based on MAPSA's data, 360 teams of personnel cruise and control the illegal disposals, but due to the expansion of Tehran this number of teams is inadequate and can't be effective in controlling the situation. CONCLUSION: In general, the overall condition of C&D waste management in Tehran seems undesirable and needs to be updated based on the experience of successful countries in this field.

9.
J Environ Public Health ; 2013: 169682, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840229

RESUMEN

Due to complex composition of leachate, the comprehensive leachate treatment methods have been not demonstrated. Moreover, the improper management of leachate can lead to many environmental problems. The aim of this study was application of Fenton process for decreasing the major pollutants of landfill leachate on Kermanshah city. The leachate was collected from Kermanshah landfill site and treated by Fenton process. The effect of various parameters including solution pH, Fe(2+) and H2O2 dosage, Fe(2+)/H2O2 molar ratio, and reaction time was investigated. The result showed that with increasing Fe(2+) and H2O2 dosage, Fe(2+)/H2O2 molar ratio, and reaction time, the COD, TOC, TSS, and color removal increased. The maximum COD, TOC, TSS, and color removal were obtained at low pH (pH: 3). The kinetic data were analyzed in term of zero-order, first-order, and second-order expressions. First-order kinetic model described the removal of COD, TOC, TSS, and color from leachate better than two other kinetic models. In spite of extremely difficulty of leachate treatment, the previous results seem rather encouraging on the application of Fenton's oxidation.


Asunto(s)
Peróxido de Hidrógeno/química , Hierro/química , Eliminación de Residuos , Residuos Sólidos , Contaminantes Químicos del Agua/química , Irán , Cinética , Modelos Teóricos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA