Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 186(15): 3148-3165.e20, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37413990

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy effectively treats human cancer, but the loss of the antigen recognized by the CAR poses a major obstacle. We found that in vivo vaccine boosting of CAR T cells triggers the engagement of the endogenous immune system to circumvent antigen-negative tumor escape. Vaccine-boosted CAR T promoted dendritic cell (DC) recruitment to tumors, increased tumor antigen uptake by DCs, and elicited the priming of endogenous anti-tumor T cells. This process was accompanied by shifts in CAR T metabolism toward oxidative phosphorylation (OXPHOS) and was critically dependent on CAR-T-derived IFN-γ. Antigen spreading (AS) induced by vaccine-boosted CAR T enabled a proportion of complete responses even when the initial tumor was 50% CAR antigen negative, and heterogeneous tumor control was further enhanced by the genetic amplification of CAR T IFN-γ expression. Thus, CAR-T-cell-derived IFN-γ plays a critical role in promoting AS, and vaccine boosting provides a clinically translatable strategy to drive such responses against solid tumors.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Neoplasias/terapia , Linfocitos T , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T/metabolismo
2.
Nano Lett ; 20(4): 2396-2409, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32125864

RESUMEN

Small-molecule therapeutics demonstrate suboptimal pharmacokinetics and bioavailability due to their hydrophobicity and size. One way to overcome these limitations-and improve their efficacy-is to use "stealth" macromolecular carriers that evade uptake by the reticuloendothelial system. Although unstructured polypeptides are of increasing interest as macromolecular drug carriers, current recombinant polypeptides in the clinical pipeline typically lack stealth properties. We address this challenge by developing new unstructured polypeptides, called zwitterionic polypeptides (ZIPPs), that exhibit "stealth" behavior in vivo. We show that conjugating paclitaxel to a ZIPP imparts amphiphilicity to the polypeptide chain that is sufficient to drive its self-assembly into micelles. This in turn increases the half-life of paclitaxel by 17-fold compared to free paclitaxel, and by 1.6-fold compared to the nonstealth control, i.e., ELP-paclitaxel. Treatment of mice bearing highly aggressive prostate or colon cancer with a single dose of ZIPP-paclitaxel nanoparticles leads to near-complete eradication of the tumor, and these nanoparticles have a wider therapeutic window than Abraxane, an FDA-approved taxane nanoformulation.


Asunto(s)
Paclitaxel Unido a Albúmina/uso terapéutico , Antineoplásicos/uso terapéutico , Nanoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico , Péptidos/uso terapéutico , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Nanoconjugados/análisis , Paclitaxel/farmacocinética , Péptidos/farmacocinética , Resultado del Tratamiento
3.
Nano Lett ; 19(11): 7977-7987, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31642326

RESUMEN

Bioactive peptides describe a very large group of compounds with diverse functions and wide applications, and their multivalent display by nanoparticles can maximize their activities. However, the lack of a universal nanoparticle platform and design rules for their optimal presentation limits the development and application of peptide ligand-decorated nanoparticles. To address this need, we developed a multivalent nanoparticle platform to study the impact of nanoparticle surface hydrophilicity and charge on peptide targeting and internalization by tumor cells. This system consists of micelles of a recombinant elastin-like polypeptide diblock copolymer (ELPBC) that present genetically encoded peptides at the micelle surface without perturbing the size, shape, stability, or peptide valency of the micelle, regardless of the peptide type. We created the largest extant set of 98 combinations of 15 tumor-homing peptides that are presented on the corona of this ELPBC micelle via 8 different peptide linkers that vary in their length and charge and also created control micelles that present the linker only. Analysis of the structure-function relationship of tumor cell targeting by this set of peptide-decorated nanoparticles enabled us to derive heuristics to optimize the delivery of peptides based on their physicochemical properties and to identify a peptide that is likely to be a widely useful ligand for targeting across nanoparticle types. This study shows that ELPBC micelles are a robust and convenient system for the presentation of diverse peptides and provides useful insights into the appropriate presentation of structurally diverse peptide ligands on nanoparticles based on their physicochemical properties.


Asunto(s)
Portadores de Fármacos/metabolismo , Elastina/metabolismo , Nanopartículas/metabolismo , Péptidos/metabolismo , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Elastina/química , Heurística , Humanos , Micelas , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Péptidos/química , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Small ; 15(12): e1804452, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30756483

RESUMEN

Short circulation time and off-target toxicity are the main challenges faced by small-molecule chemotherapeutics. To overcome these shortcomings, an albumin-binding peptide conjugate of chemotherapeutics is developed that binds specifically to endogenous albumin and harnesses its favorable pharmacokinetics and pharmacodynamics for drug delivery to tumors. A protein-G-derived albumin-binding domain (ABD) is conjugated with doxorubicin (Dox) via a pH-sensitive linker. One to two Dox molecules are conjugated to ABD without loss of aqueous solubility. The albumin-binding ABD-Dox conjugate exhibits nanomolar affinity for human and mouse albumin, and upon administration in mice, shows a plasma half-life of 29.4 h, which is close to that of mouse albumin. Additionally, 2 h after administration, ABD-Dox exhibits an approximately 4-fold higher concentration in the tumor than free Dox. Free Dox clears quickly from the tumor, while ABD-Dox maintains a steady concentration in the tumor for at least 72 h, so that its relative accumulation at 72 h is ≈120-fold greater than that of free Dox. The improved pharmacokinetics and biodistribution of ABD-Dox result in enhanced therapeutic efficacy in syngeneic C26 colon carcinoma and MIA PaCa-2 pancreatic tumor xenografts, compared with free Dox and aldoxorubicin, an albumin-reactive Dox prodrug currently in clinical development.


Asunto(s)
Albúminas/metabolismo , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Hidrazonas/farmacología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Doxorrubicina/sangre , Doxorrubicina/química , Doxorrubicina/farmacocinética , Humanos , Hidrazonas/química , Hidrazonas/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Péptidos/síntesis química , Termodinámica , Distribución Tisular/efectos de los fármacos
5.
Nano Lett ; 18(12): 7784-7793, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30461287

RESUMEN

We report the development of drug-encapsulating nanoparticles that bind endogenous albumin upon intravenous injection and evaluate their in vivo performance in a murine as well as canine animal model. The gene encoding a protein-G derived albumin binding domain (ABD) was fused to that of a chimeric polypeptide (CP), and the ABD-CP fusion was recombinantly synthesized by bacterial expression of the gene. Doxorubicin (DOX) was conjugated to the C-terminus of the ABD-CP fusion, and conjugation of multiple copies of the drug to one end of the ABD-CP triggered its self-assembly into ∼100 nm diameter spherical micelles. ABD-decorated micelles exhibited submicromolar binding affinity for albumin and also preserved their spherical morphology in the presence of albumin. In a murine model, albumin-binding micelles exhibited dose-independent pharmacokinetics, whereas naked micelles exhibited dose-dependent pharmacokinetics. In addition, in a canine model, albumin binding micelles resulted in a 3-fold increase in plasma half-life and 6-fold increase in plasma exposure as defined by the area under the curve (AUC) of the drug, compared with naked micelles. Furthermore, in a murine colon carcinoma model, albumin-binding nanoparticles demonstrated lower uptake by the reticuloendothelial system (RES) system organs, the liver and spleen, that are the main target organs of toxicity for nanoparticulate delivery systems and higher uptake by the tumor than naked micelles. The increased uptake by s.c. C26 colon carcinoma tumors in mice translated to a wider therapeutic window of doses ranging from 20 to 60 mg equivalent of DOX per kg body weight (mg DOX equiv·kg-1 BW) for albumin-binding ABD-CP-DOX micelles, as compared to naked micelles that were only effective at their maximum tolerated dose of 40 mg DOX equiv·kg-1 BW.


Asunto(s)
Albúminas/metabolismo , Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/metabolismo , Nanopartículas/metabolismo , Péptidos/metabolismo , Animales , Antibióticos Antineoplásicos/farmacocinética , Sitios de Unión , Línea Celular Tumoral , Perros , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Humanos , Ratones , Micelas , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Péptidos/química , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
6.
Angew Chem Int Ed Engl ; 56(45): 13979-13984, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28879687

RESUMEN

Inspired by biohybrid molecules that are synthesized in Nature through post-translational modification (PTM), we have exploited a eukaryotic PTM to recombinantly synthesize lipid-polypeptide hybrid materials. By co-expressing yeast N-myristoyltransferase with an elastin-like polypeptide (ELP) fused to a short recognition sequence in E. coli, we show robust and high-yield modification of the ELP with myristic acid. The ELP's reversible phase behavior is retained upon myristoylation and can be tuned to span a 30-60 °C. Myristoylated ELPs provide a versatile platform for genetically pre-programming self-assembly into micelles of varied size and shape. Their lipid cores can be loaded with hydrophobic small molecules by passive diffusion. Encapsulated doxorubicin and paclitaxel exhibit cytotoxic effects on 4T1 and PC3-luc cells, respectively, with potencies similar to chemically conjugated counterparts, and longer plasma circulation than free drug upon intravenous injection in mice.


Asunto(s)
Lípidos/química , Péptidos/química , Preparaciones Farmacéuticas/química , Polímeros/síntesis química , Aciltransferasas/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Cromatografía Líquida de Alta Presión , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Doxorrubicina/farmacocinética , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Paclitaxel/administración & dosificación , Paclitaxel/química , Paclitaxel/farmacocinética , Polímeros/química , Prueba de Estudio Conceptual , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Biotechnol Bioeng ; 111(9): 1699-716, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24916780

RESUMEN

The goal of drug delivery is to improve the safety and therapeutic efficacy of drugs. This review focuses on delivery platforms that are either derived from endogenous pathways, long-circulating biomolecules and cells or that piggyback onto long-circulating biomolecules and cells. The first class of such platforms is protein-based delivery systems--albumin, transferrin, and fusion to the Fc domain of antibodies--that have a long-circulation half-life and are designed to transport different molecules. The second class is lipid-based delivery systems-lipoproteins and exosomes-that are naturally occurring circulating lipid particles. The third class is cell-based delivery systems--erythrocytes, macrophages, and platelets--that have evolved, for reasons central to their function, to exhibit a long life-time in the body. The last class is small molecule-based delivery systems that include folic acid. This article reviews the biology of these systems, their application in drug delivery, and the promises and limitations of these endogenous systems for drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas/administración & dosificación , Tecnología Farmacéutica/métodos , Biotecnología/métodos
8.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38659938

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 elicits remarkable clinical efficacy in B-cell malignancies, but many patients relapse due to failed expansion and/or progressive loss of CAR-T cells. We recently reported a strategy to potently restimulate CAR-T cells in vivo, enhancing their functionality by administration of a vaccine-like stimulus comprised of surrogate peptide ligands for a CAR linked to a lymph node-targeting amphiphilic PEG-lipid (termed CAR-T-vax). Here, we demonstrate a general strategy to generate and optimize peptide mimotopes enabling CAR-T-vax generation for any CAR. Using the clinical CD19 CAR FMC63 as a test case, we employed yeast surface display to identify peptide binders to soluble IgG versions of FMC63, which were subsequently affinity matured by directed evolution. CAR-T vaccines using these optimized mimotopes triggered marked expansion of both murine CD19 CAR-T cells in a syngeneic model and human CAR-T cells in a humanized mouse model of B cell acute lymphoblastic leukemia (B-ALL), and enhanced control of leukemia progression. This approach thus enables vaccine boosting to be applied to any clinically-relevant CAR-T cell product.

9.
Nat Rev Bioeng ; 1(2): 107-124, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37772035

RESUMEN

Therapies modulating the immune system offer the prospect of treating a wide range of conditions including infectious diseases, cancer and autoimmunity. Biomaterials can promote specific targeting of immune cell subsets in peripheral or lymphoid tissues and modulate the dosage, timing and location of stimulation, thereby improving safety and efficacy of vaccines and immunotherapies. Here we review recent advances in biomaterials-based strategies, focusing on targeting of lymphoid tissues, circulating leukocytes, tissue-resident immune cells and immune cells at disease sites. These approaches can improve the potency and efficacy of immunotherapies by promoting immunity or tolerance against different diseases.

10.
NPJ Vaccines ; 8(1): 117, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573422

RESUMEN

In the ongoing effort to develop a vaccine against HIV, vaccine approaches that promote strong germinal center (GC) responses may be critical to enable the selection and affinity maturation of rare B cell clones capable of evolving to produce broadly neutralizing antibodies. We previously demonstrated an approach for enhancing GC responses and overall humoral immunity elicited by alum-adjuvanted protein immunization via the use of phosphoserine (pSer) peptide-tagged immunogens that stably anchor to alum particles via ligand exchange with the alum particle surface. Here, using a clinically relevant stabilized HIV Env trimer termed MD39, we systematically evaluated the impact of several parameters relevant to pSer tag composition and trimer immunogen design to optimize this approach, including phosphate valency, amino acid sequence of the trimer C-terminus used for pSer tag conjugation, and structure of the pSer tag. We also tested the impact of co-administering a potent saponin/monophosphoryl lipid A (MPLA) nanoparticle co-adjuvant with alum-bound trimers. We identified MD39 trimer sequences bearing an optimized positively-charged C-terminal amino acid sequence, which, when conjugated to a pSer tag with four phosphates and a polypeptide spacer, bound very tightly to alum particles while retaining a native Env-like antigenicity profile. This optimized pSer-trimer design elicited robust antigen-specific GC B cell and serum IgG responses in mice. Through this optimization, we present a favorable MD39-pSer immunogen construct for clinical translation.

11.
Clin Cancer Res ; 26(18): 5036-5047, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32718998

RESUMEN

PURPOSE: Nanoparticle-encapsulated drug formulations can improve responses to conventional chemotherapy by increasing drug retention within the tumor and by promoting a more effective antitumor immune response than free drug. New drug delivery modalities are needed in sarcomas because they are often chemoresistant cancers, but the rarity of sarcomas and the complexity of diverse subtypes makes it challenging to investigate novel drug formulations. EXPERIMENTAL DESIGN: New drug formulations can be tested in animal models of sarcomas where the therapeutic response of different formulations can be compared using mice with identical tumor-initiating mutations. Here, using Cre/loxP and CRISPR/Cas9 techniques, we generated two distinct mouse models of Pten-deleted soft-tissue sarcoma: malignant peripheral nerve sheath tumor (MPNST) and undifferentiated pleomorphic sarcoma (UPS). We used these models to test the efficacy of chimeric polypeptide doxorubicin (CP-Dox), a nanoscale micelle formulation, in comparison with free doxorubicin. RESULTS: The CP-Dox formulation was superior to free doxorubicin in MPNST models. However, in UPS tumors, CP-Dox did not improve survival in comparison with free doxorubicin. While CP-Dox treatment resulted in elevated intratumoral doxorubicin concentrations in MPNSTs, this increase was absent in UPS tumors. In addition, elevation of CD8+ T cells was observed exclusively in CP-Dox-treated MPNSTs, although these cells were not required for full efficacy of the CP nanoparticle-based chemotherapy. CONCLUSIONS: These results have important implications for treating sarcomas with nanoparticle-encapsulated chemotherapy by highlighting the tumor subtype-dependent nature of therapeutic response.


Asunto(s)
Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Sarcoma/tratamiento farmacológico , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Doxorrubicina/farmacocinética , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Ratones Noqueados , Micelas , Nanopartículas/química , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/inmunología , Neoplasias de la Vaina del Nervio/patología , Fosfohidrolasa PTEN/genética , Péptidos/química , Sarcoma/genética , Sarcoma/inmunología , Sarcoma/patología , Distribución Tisular
12.
Biomaterials ; 192: 475-485, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30504081

RESUMEN

The clinical utility of many peptide and protein drugs is limited by their short in-vivo half-life. To address this limitation, we report a new class of polypeptide-based materials that have a long plasma circulation time. The design of these polypeptides is motivated by the hypothesis that incorporating a zwitterionic sequence, within an intrinsically disordered polypeptide motif, would impart "stealth" behavior to the polypeptide and increase its plasma residence time, a behavior akin to that of synthetic stealth polymers. We designed these zwitterionic polypeptides (ZIPPs) with a repetitive (VPX1X2G)n motif, where X1 and X2 are cationic and anionic amino acids, respectively, and n is the number of repeats. To test this hypothesis, we synthesized a set of ZIPPs with different pairs of cationic and anionic residues with varied chain length. We show that a combination of lysine and glutamic acid in the ZIPP confer superior pharmacokinetics, for both intravenous and subcutaneous administration, compared to uncharged control polypeptides. Finally, to demonstrate their clinical utility, we fused the best performing ZIPP sequence to glucagon-like peptide-1 (GLP1), a peptide drug used for treatment of type-2 diabetes and show that the ZIPP-GLP1 fusion outperforms an uncharged polypeptide of the same molecular weight in a mouse model of type-2 diabetes.


Asunto(s)
Sistemas de Liberación de Medicamentos , Proteínas Intrínsecamente Desordenadas/química , Péptidos/química , Secuencia de Aminoácidos , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Elastina/química , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Péptidos/síntesis química , Péptidos/farmacocinética , Distribución Tisular
13.
Macromol Biosci ; 17(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27925398

RESUMEN

The goal of drug delivery is to deliver therapeutics to the site of disease while reducing unwanted side effects. In recent years, a diverse variety of synthetic nano and microparticles have been developed as drug delivery systems. The success of these systems for drug delivery lies in their ability to overcome biological barriers such as the blood-brain barrier, to evade immune clearance and avoid nonspecific biodistribution. This Review provides an overview of recent advances in the design of biohybrid drug delivery systems, which combine cells with synthetic systems to overcome some of these biological hurdles. Examples include eukaryotic cells, such as stem cells, red blood cells, immune cells, platelets, and cancer cells that are used to carry drug-loaded synthetic particles. Synthetic particles can also be cloaked with naturally derived cell membranes and thereby evade immune clearance, exhibit prolonged systemic circulation, and target specific tissues by capitalizing on the interaction/homing tendency of certain cells and their membrane components to particular tissues. Different designs of cell-based biohybrid systems and their applications, as well as their promise and limitations, are discussed herein.


Asunto(s)
Materiales Biocompatibles/química , Células/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Animales , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
14.
Int J Nanomedicine ; 6: 1487-96, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21796249

RESUMEN

This study deals with the preparation and investigation of a nanoscale delivery system for the anticancer drug doxorubicin (DOX) using its complexation with polyanionic carbohydrate dextran sulfate (DS). Dynamic light scattering, SEM, and zeta potential determination were used to characterize nanocomplexes. DOX-DS complexation was studied in the presence of ethanol as a hydrogen-bond disrupting agent, NaCl as an electrostatic shielding agent, and chitosan as a positively charged polymer. Thermodynamics of DOX-DS interaction was studied using isothermal titration calorimetry (ITC). A dialysis method was applied to investigate the release profile of DOX from DOX-DS nanocomplexes. Spherical and smooth-surfaced DOX-DS nanocomplexes (250-500 nm) with negative zeta potential were formed at a DS/DOX (w/w) ratio of 0.4-0.6, with over 90% drug encapsulation efficiency. DOX when complexed with DS showed lower fluorescence emission and 480 nm absorbance plus a 15 nm bathometric shift in its visible absorbance spectrum. Electrostatic hydrogen bonding and π-π stacking interactions are the main contributing interactions in DOX-DS complexation. Thermal analysis of DOX-DS complexation by ITC revealed that each DOX molecule binds with 3 DS glycosyl monomers. Drug release profile of nanocomplexes showed a fast DOX release followed by a slow sustained release, leading to release of 32% of entrapped DOX within 15 days. DOX-DS nanocomplexes may serve as a drug delivery system with efficient drug encapsulation and also may be taken into consideration in designing DOX controlled-release systems.


Asunto(s)
Antibióticos Antineoplásicos/química , Quitosano/química , Sulfato de Dextran/química , Doxorrubicina/química , Portadores de Fármacos/química , Nanocápsulas/química , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Estabilidad de Medicamentos , Etanol , Enlace de Hidrógeno , Luz , Microscopía Electrónica de Rastreo , Nanocápsulas/administración & dosificación , Nanocápsulas/ultraestructura , Dispersión de Radiación , Cloruro de Sodio
15.
Int J Nanomedicine ; 6: 1977-90, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21976974

RESUMEN

BACKGROUND: Targeting drugs to their sites of action to overcome the systemic side effects associated with most antineoplastic agents is still a major challenge in pharmaceutical research. In this study, the monoclonal antibody, trastuzumab, was used as a targeting agent in nanoparticles carrying the antitumor drug, doxorubicin, specifically to its site of action. METHODS: Chitosan-doxorubicin conjugation was carried out using succinic anhydride as a crosslinker. Trastuzumab was conjugated to self-assembled chitosan-doxorubin conjugate (CS-DOX) nanoparticles (particle size, 200 nm) via thiolation of lysine residues and subsequent linking of the resulted thiols to chitosan. Conjugation was confirmed by gel permeation chromatography, differential scanning calorimetry, Fourier transform infrared spectroscopy, and (1)H nuclear magnetic resonance spectroscopy studies. Dynamic light scattering, transmission electron microscopy, and zeta potential determination were used to characterize the nanoparticles. RESULTS: CS-DOX conjugated nanoparticles had a spherical shape and smooth surface with a narrow size distribution and core-shell structure. Increasing the ratio of doxorubicin to chitosan in the conjugation reaction gave rise to a higher doxorubicin content but lower conjugation efficiency. Trastuzumab-decorated nanoparticles (CS-DOX-mAb) contained 47 µg/mg doxorubicin and 33.5 µg/mg trastuzumab. Binding of trastuzumab to the nanoparticles was further probed thermodynamically by isothermal titration calorimetry. Fluorescence microscopy demonstrated enhanced and selective uptake of CS-DOX-mAb by Her2+ cancer cells compared with nontargeted CS-DOX nanoparticles and free drug. CONCLUSION: Antibody-conjugated nanoparticles were shown to discriminate between Her2+ and Her2⁻ cells, and thus have the potential to be used in active targeted drug delivery, with reduction of drug side effects in Her2+ breast and ovarian cancers.


Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Antineoplásicos/uso terapéutico , Doxorrubicina/uso terapéutico , Nanoconjugados/química , Anticuerpos Monoclonales Humanizados/química , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Química Física , Quitosano/química , Doxorrubicina/química , Femenino , Humanos , Nanoconjugados/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Tamaño de la Partícula , Receptor ErbB-2/inmunología , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA