RESUMEN
Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.
Asunto(s)
Metabolómica , Embarazo , Animales , Femenino , Humanos , Embarazo/metabolismo , Corticosterona/metabolismo , Metaboloma/fisiología , Placenta/metabolismo , Preeclampsia , Primates/metabolismoRESUMEN
Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.
Asunto(s)
Gastrulación , Macaca fascicularis , Organogénesis , Análisis de la Célula Individual , Animales , Humanos , Ratones , Gastrulación/genética , Macaca fascicularis/embriología , Macaca fascicularis/genética , Organogénesis/genética , Cuerpos Embrioides , Perfilación de la Expresión Génica , Línea Primitiva/citología , Línea Primitiva/embriología , Tubo Neural/citología , Tubo Neural/embriología , Cresta Neural/citología , Cresta Neural/embriología , Vía de Señalización Hippo , Mesodermo/citología , Mesodermo/embriología , Células MadreRESUMEN
Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, and reported causing reproductive toxicity in mammals. However, little is known about the toxic effect on the placenta. In this study, dams were orally administered different doses of TOCP to explore the effect of TOCP on placental development. Results showed that TOCP exposure significantly reduced numbers of implanted embryo, caused atrophy and collapse of ectoplacental cone, and decreased total areas of placenta and numbers of PCNA-positive cells. Expression levels of placental development genes were prominently downregulated in the TOCP-treated groups. Moreover, TOCP administration induced placental apoptosis and autophagy by upregulating P53, Bax, Beclin-1, ratio of LC3 II/LC3 I and Atg5 and downregulating Bcl-2 protein. In addition, TOCP exposure markedly inhibited activities of catalase and superoxide dismutase and increased the production of H2 O2 and malondialdehyde. Collectively, these findings suggest that apoptosis, autophagy and oxidative stress may be involved in the TOCP-induced reproductive toxicity.
Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Estrés Oxidativo/efectos de los fármacos , Placenta/efectos de los fármacos , Plastificantes/toxicidad , Tritolilfosfatos/toxicidad , Animales , Femenino , Masculino , Ratones , Placenta/metabolismo , Placenta/patología , Embarazo , Reproducción/efectos de los fármacosRESUMEN
BACKGROUND/AIMS: Neuropathy target esterase (NTE, also known as neurotoxic esterase) is proven to deacylate phosphatidylcholine (PC) to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE)-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. METHODS: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. RESULTS: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. CONCLUSIONS: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway.
Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Preeclampsia/patología , Adulto , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Hidrolasas de Éster Carboxílico/genética , Línea Celular , Movimiento Celular , Regulación hacia Abajo , Femenino , Edad Gestacional , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Placenta/metabolismo , Preeclampsia/metabolismo , Embarazo , Interferencia de ARN , Transducción de Señal , Trofoblastos/citología , Trofoblastos/metabolismo , Adulto JovenRESUMEN
Uterine natural killer (uNK) cells are short-lived, terminally differentiated and the most abundant lymphocytes in the uterus which play a crucial role in the spiral arteriole modification and establishment of successful pregnancy. Dysregulation of uNK cells has been linked to gestational implications such as recurrent pregnancy loss, preeclampsia and fetal growth retardation. There is evidence showing that progesterone and estrogen can regulate the recruitment, proliferation, differentiation and function of uNK cells via direct action on intracellular nuclear receptors or through intermediary cells in the uterus during early pregnancy. As the deepening of related research in this field, the role of conceptus in such regulation has received extensive attention, it utilizes endocrine signaling (hCG), juxtacrine signaling (HLA-C, HLA-E, HLA-G) and paracrine signaling (cytokines) to facilitate the activities of uNK cells. In addition, under the influence of ovarian hormones, conceptus can increase expression of PIBF and HLA-G molecules to reduce cytotoxicity of uNK cells and promote angiogenesis. In this review, we aim to concentrate on the novel findings of ovarian hormones in the regulation of uNK cells, emphasize the regulatory role of conceptus on uNK cells and highlight the proposed issues for future research in the field.
Asunto(s)
Embrión de Mamíferos/fisiología , Células Asesinas Naturales/fisiología , Ovario/fisiología , Primer Trimestre del Embarazo/inmunología , Útero/citología , Útero/inmunología , Aborto Habitual/inmunología , Animales , Comunicación Celular/inmunología , Implantación del Embrión/inmunología , Femenino , Edad Gestacional , Humanos , EmbarazoRESUMEN
Pregnancy is associated with physiological adaptations that affect virtually all organs, enabling the mother to support the growing fetus and placenta while withstanding the demands of pregnancy. As a result, mammalian pregnancy is a unique state that exerts paradoxical effects on maternal health. On one hand, the metabolic stress induced by pregnancy can accelerate aging and functional decline in organs. On the other hand, pregnancy activates metabolic programming and tissue regenerative responses that can reverse age-related impairments. In this sense, the oocyte-to-blastocyst transition is not the only physiological reprogramming event in the mammalian body, as pregnancy-induced regeneration could constitute a second physiological reprogramming event. Here, we review findings on how pregnancy dualistically leads to aging and rejuvenation in the maternal body.
RESUMEN
The embryo-like structures (embryoids) constructed by aggregating embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) have provided revolutionary tools for studying the intricate interaction between embryonic and extra-embryonic tissues during early embryonic development, which has been achieved in mice. However, due to the opposite dependence on some signalling pathways for in vitro culture of human ESCs (hESCs) and TSCs (hTSCs), particularly WNT and TGFß signalling pathways, which limits the construction of human post-implantation embryoids by aggregating hESCs and hTSCs. To overcome this challenge, here, by screening 1639 chemicals, we found that an inhibitor of integrated stress response, ISRIB, can replace WNT agonists and TGFß inhibitors to maintain the stemness and differentiation capacity of hTSCs. Thus, we developed an ISRIB-dependent in vitro culture medium for hTSCs, namely nTSM. Furthermore, we demonstrated that ISRIB could also maintain the hESC stemness. Using a 3D co-culture system (hESCs and hTSCs aggregate, ETA), we demonstrated that a 1:1 mixture of hESC culture medium (ESM) and nTSM improved the cell proliferation and organisation of both hESC- and hTSC-compartments and the lumenogenesis of hESC-compartment in ETAs. Overall, our study provided an ISRIB-dependent system for co-culturing hESCs and hTSCs, which facilitated the construction of human embryoids by aggregating hESCs and hTSCs.
Asunto(s)
Diferenciación Celular , Técnicas de Cocultivo , Trofoblastos , Humanos , Trofoblastos/citología , Trofoblastos/metabolismo , Técnicas de Cocultivo/métodos , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/químicaRESUMEN
Supporting healthy pregnancy outcomes requires a comprehensive understanding of the cellular hierarchy and underlying molecular mechanisms in the primate placenta during gestation. Here, we present a single-cell transcriptome-wide view of the cynomolgus macaque placenta throughout gestation. Bioinformatics analyses and multiple validation experiments suggested that placental trophoblast cells exhibited stage-specific differences across gestation. Interactions between trophoblast cells and decidual cells also showed gestational stage-dependent differences. The trajectories of the villous core cells indicated that placental mesenchymal cells were derived from extraembryonic mesoderm (ExE.Meso) 1, whereas placental Hofbauer cells, erythrocytes, and endothelial cells were derived from ExE.Meso2. Comparative analyses of human and macaque placentas uncovered conserved features of placentation across species, and the discrepancies of extravillous trophoblast cells (EVTs) between human and macaque correlated to their differences in invasion patterns and maternal-fetal interactions. Our study provides a groundwork for elucidating the cellular basis of primate placentation.
Asunto(s)
Placenta , Transcriptoma , Animales , Embarazo , Femenino , Humanos , Transcriptoma/genética , Células Endoteliales , Placentación , Primates , MacacaRESUMEN
The discovery of acrylamide in various carbohydrate-rich foods cooked at high temperatures has attracted public health concerns. This study aimed to elucidate the effects and mechanisms additional with acrylamide exposure on the luteal function in vivo during early- and mid-pregnancy. Mice were fed with different dosages of acrylamide (0, 10 and 50 mg/kg/day) by gavage from gestational days (GD) 3 to GD 8 or GD 13. The results indicated that acrylamide exposure significantly decreased levels of serum progesterone and estradiol, and the numbers and relative areas of ovarian corpora lutea. The expression levels of Hsd3b1, Cyp11a1 and Star mRNA markedly reduced in acrylamide-treated ovaries. Furthermore, acrylamide exposure obviously suppressed the activities of catalase and superoxide dismutase, but increased the levels of H2O2 and malondialdehyde. Additionally, acrylamide treatment significantly inhibited luteal angiogenesis and induced the apoptosis of ovarian cells by up-regulation of P53 and Bax protein and down-regulation of Bcl-2 protein. Thus, our results showed that gestational exposure to acrylamide significantly inhibited luteal endocrine function via dysregulation of ovarian angiogenesis, oxidative stress and apoptosis in vivo.
Asunto(s)
Acrilamida/toxicidad , Cuerpo Lúteo/efectos de los fármacos , Ovario , Estrés Oxidativo/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Animales , Apoptosis/efectos de los fármacos , Femenino , Masculino , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Ovario/irrigación sanguínea , Ovario/efectos de los fármacos , Ovario/fisiopatología , EmbarazoRESUMEN
Acrylamide (ACR), a neurotoxicity and carcinogenic chemical, has attracted considerable attention since it is present at high concentrations in thermally cooked carbohydrate-rich foods. ACR exposure significantly increased rate of fetal resorption, and decreased fetal body weights in mice. However, no detailed information is available about the effect of ACR on uterine decidualization, which is a vital process in the establishment of successful pregnancy. Thus, our aim of this study was to explore the effect and mechanism of ACR on uterine decidualization in vivo during mice pregnancy. Mice were gavaged with 0, 10, and 50â¯mg ACR /kg/day from gestational days (GD) 1 until GD 8, whereas pseudopregnant mice from pseudopregnant day (PPD) 4 until PPD 8. Results indicated ACR treatment dramatically reduced numbers of implanted embryos, and decreased the weights of implantation site and oil-induced uterus. Nevertheless, no significant difference was observed in the weights of no oil-induced uterus between control and ACR-treated group. Furthermore, ACR significantly reduced numbers of polyploidy and PCNA-positive decidual cells and expression of cyclin D3 and p21 proteins, and induced apoptosis of decidua, as presented by up-regulation of Bax and cleaved-caspase-3, and decreased Bcl-2 protein during normal pregnant and pseudopregnant process. In summary, ACR exposure significantly inhibited uterine endometrial decidualization via the apoptosis and suppression of cyclin D3/p21 in mice.
Asunto(s)
Acrilamida/toxicidad , Ciclina D3/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Útero/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Regulación hacia Abajo , Implantación del Embrión , Femenino , Ratones , Embarazo , Útero/crecimiento & desarrollo , Útero/metabolismoRESUMEN
BACKGROUND/AIM: Patients with polycystic ovary syndrome (PCOS), characterized by anovulation, hyperandrogenemia and polycystic ovaries, are still vulnerable to undergo recurrent pregnancy loss and premature labor even though the ovulatory process is pharmacologically recovered. However, its potential mechanism remains unknown. Thus, our aim was to investigate the effect and mechanism of hyperandrogenemia and flutamide (a non-steroidal anti-androgen) on the embryo implantation and pregnancy during mid-pregnancy. METHODS: We used a mouse model in which PCOS-like hyperandrogenemia was induced by subcutaneous injection of testosterone propionate. In this model, we observed the effect of hyperandrogenemia and flutamide on the decidualization, angiogenesis and uNK cells by methods of immunohistochemistry, quantitative PCR, western blotting and Dolichos biflorus agglutinin (DBA) lectin staining. RESULTS: Testosterone and flutamide treatment did not significantly influence the numbers of implanted embryo compared with the control group. However, different doses of testosterone significantly increased the ratio of resorbed /implanted embryo, decreased the level of prl8a2 mRNA and cyclin D3 protein, inhibited the uterine angiogenesis and reduced the numbers of uNK cells, but combined treatment with flutamide markedly decreased the resorbed embryos, increased expressions of prl8a2 mRNA and cyclin D3 protein and angiogenesis and numbers of uNK cells. CONCLUSION: Flutamide treatment can efficiently ameliorate the hyperandrogenemia-induced the disorders in aspects of decidualization, angiogenesis and uNK cells, which further improve the poor endometrial receptivity in PCOS patients.
Asunto(s)
Decidua/efectos de los fármacos , Implantación del Embrión/efectos de los fármacos , Flutamida/farmacología , Hiperandrogenismo/fisiopatología , Neovascularización Patológica/tratamiento farmacológico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Útero/efectos de los fármacos , Antagonistas de Andrógenos/farmacología , Animales , Decidua/citología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/metabolismo , Embarazo , Testosterona/administración & dosificación , Útero/citologíaRESUMEN
Acrylamide, a carcinogen and neurotoxic substance, recently has been discovered in various heat-treated carbohydrate-rich foods. The aim of this study was to investigate the effects of acrylamide exposure on placental development. Pregnant mice received acrylamide by gavage at dosages of 0, 10, and 50 mg/kg/day from gestational days (GD) 3 until GD 8 or GD 13. The results showed that acrylamide feeding significantly decreased the numbers of viable embryos and increased the numbers of resorbed embryos on GD 13. Acrylamide exposure reduced the absolute and relative weight of placentas and embryos, and inhibited the development of ectoplacental cone (EPC) and placenta, as shown by the atrophy of EPC and reduced placental area. Acrylamide markedly reduced the numbers of labyrinth vessels. Expression levels of most placental key genes such as Esx1, Hand1, and Hand2 mRNA dramatically decreased in acrylamide-treated placentas. Furthermore, acrylamide treatment inhibited proliferation and induced apoptosis of placentas, as shown by decreased Ki67-positive cells and Bcl-2 protein, and increased the expression of Bax, cleaved-caspase-3, and cleaved-caspase-8 proteins. In conclusion, our results indicated that gestational exposure to acrylamide inhibits placental development through dysregulation of placental key gene expression and labyrinth vessels, suppression of proliferation, and apoptosis induction in mice.
Asunto(s)
Acrilamida/toxicidad , Intercambio Materno-Fetal , Placenta/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Ratones , Placenta/irrigación sanguínea , Placentación/efectos de los fármacos , EmbarazoRESUMEN
BACKGROUND: Titanium dioxide nanoparticles (TiO2 NPs) have recently found applications in a wide variety of consumer goods. TiO2 NPs exposure significantly increases fetal deformities and mortality. However, the potential toxicity of TiO2 NPs on the growth and development of placenta has been rarely studied during mice pregnancy. PURPOSE: The objective of this study was to investigate the effects of maternal exposure of TiO2 NPs on the placentation. METHODS: Mice were administered TiO2 NPs by gavage at 0, 1 and 10 mg/kg/day from gestational day (GD) 1 to GD 13. Uteri and placentas from these mice were collected and counted the numbers of implanted and resorbed embryo and measured the placental weight on GD 13. Placental morphometry was observed by hematoxylin and eosin staining. The levels of Hand1, Esx1, Eomes, Hand2, Ascl2 and Fra1 mRNA were assessed by qRT-PCR. Uterine NK (uNK) cells were detected by using DBA lectin. Laminin immunohistochemical staining was to identify fetal vessels. Western blotting and transmission electron micrograph (TEM) were used to assess the apoptosis of placenta. RESULTS: No treatment-related difference was observed in the numbers of implanted and resorbed embryos and weight of placenta between the groups. However, 1 mg/kg/day TiO2 NPs treatment significantly reduced the ratio of placenta/body weight on GD 13. The proportion of spongiotrophoblast in the 10 mg/kg/day dose group became higher than that in the control group, yet that of labyrinth was significantly lower in 10 mg/kg/day mice. The expression levels of Hand1, Esx1, Eomes, Hand2, Ascl2 and Fra1 mRNA markedly decreased in TiO2 NP treated placentas. Furthermore, TiO2 NPs treatment impaired the formation of intricate networks of fetal vessels and reduced the number of uNK cells, and inhibited proliferation and induced apoptosis of placenta by nuclear pyknosis, the activation of caspase-3 and upregulation of Bax protein and downregulation of Bcl-2 protein on GD 13. CONCLUSION: Gestational exposure to TiO2 NPs significantly impairs the growth and development of placenta in mice, with a mechanism that seems to be involved in the dysregulation of vascularization, proliferation and apoptosis. Therefore, our results suggested the need for great caution while handling of the nanomaterials by workers and specially pregnant consumers.