Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(10): 7052-7062, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427585

RESUMEN

Functional DNAs are valuable molecular tools in chemical biology and analytical chemistry but suffer from low activities due to their limited chemical functionalities. Here, we present a chemoenzymatic method for site-specific installation of diverse functional groups on DNA, and showcase the application of this method to enhance the catalytic activity of a DNA catalyst. Through chemoenzymatic introduction of distinct chemical groups, such as hydroxyl, carboxyl, and benzyl, at specific positions, we achieve significant enhancements in the catalytic activity of the RNA-cleaving deoxyribozyme 10-23. A single carboxyl modification results in a 100-fold increase, while dual modifications (carboxyl and benzyl) yield an approximately 700-fold increase in activity when an RNA cleavage reaction is catalyzed on a DNA-RNA chimeric substrate. The resulting dually modified DNA catalyst, CaBn, exhibits a kobs of 3.76 min-1 in the presence of 1 mM Mg2+ and can be employed for fluorescent imaging of intracellular magnesium ions. Molecular dynamics simulations reveal the superior capability of CaBn to recruit magnesium ions to metal-ion-binding site 2 and adopt a catalytically competent conformation. Our work provides a broadly accessible strategy for DNA functionalization with diverse chemical modifications, and CaBn offers a highly active DNA catalyst with immense potential in chemistry and biotechnology.


Asunto(s)
ADN Catalítico , ARN Catalítico , Secuencia de Bases , Magnesio , ADN Catalítico/química , ADN , ARN/química , Iones , Conformación de Ácido Nucleico , Catálisis , ARN Catalítico/metabolismo
2.
Bioorg Chem ; 143: 107049, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150936

RESUMEN

Nucleic acids serve a dual role as both genetic materials in living organisms and versatile molecular tools for various applications. Threose nuclei acid (TNA) stands out as a synthetic genetic polymer, holding potential as a primitive genetic material and as a contemporary molecular tool. In this review, we aim to provide an extensive overview of TNA research progress in these two key aspects. We begin with a retrospect of the initial discovery of TNA, followed by an in-depth look at the structural features of TNA duplex and experimental assessment of TNA as a possible RNA progenitor during early evolution of life on Earth. In the subsequent section, we delve into the recent development of TNA molecular tools such as aptamers, catalysts and antisense oligonucleotides. We emphasize the practical application of functional TNA molecules in the realms of targeted protein degradation and selective gene silencing. Our review culminates with a discussion of future research directions and the technical challenges that remain to be addressed in the field of TNA research.


Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos/química , Oligonucleótidos/química , Tetrosas/química , ARN/química
3.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792076

RESUMEN

The ongoing SARS-CoV-2 pandemic has underscored the urgent need for versatile and rapidly deployable antiviral strategies. While vaccines have been pivotal in controlling the spread of the virus, the emergence of new variants continues to pose significant challenges to global health. Here, our study focuses on a novel approach to antiviral therapy using DNA aptamers, short oligonucleotides with high specificity and affinity for their targets, as potential inhibitors against the spike protein of SARS-CoV-2 variants Omicron and JN.1. Our research utilizes steered molecular dynamics (SMD) simulations to elucidate the binding mechanisms of a specifically designed DNA aptamer, AM032-4, to the receptor-binding domain (RBD) of the aforementioned variants. The simulations reveal detailed molecular insights into the aptamer-RBD interaction, demonstrating the aptamer's potential to maintain effective binding in the face of rapid viral evolution. Our work not only demonstrates the dynamic interaction between aptamer-RBD for possible antiviral therapy but also introduces a computational method to study aptamer-protein interactions.


Asunto(s)
Aptámeros de Nucleótidos , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Sitios de Unión , Antivirales/química , Antivirales/farmacología , Dominios Proteicos , COVID-19/virología , COVID-19/metabolismo , Tratamiento Farmacológico de COVID-19
4.
Angew Chem Int Ed Engl ; 63(13): e202317334, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323479

RESUMEN

Xeno-nucleic acids (XNAs) are synthetic genetic polymers with improved biological stabilities and offer powerful molecular tools such as aptamers and catalysts. However, XNA application has been hindered by a very limited repertoire of tool enzymes, particularly those that enable de novo XNA synthesis. Here we report that terminal deoxynucleotide transferase (TdT) catalyzes untemplated threose nucleic acid (TNA) synthesis at the 3' terminus of DNA oligonucleotide, resulting in DNA-TNA chimera resistant to exonuclease digestion. Moreover, TdT-catalyzed TNA extension supports one-pot batch preparation of biostable chimeric oligonucleotides, which can be used directly as staple strands during self-assembly of DNA origami nanostructures (DONs). Such TNA-protected DONs show enhanced biological stability in the presence of exonuclease I, DNase I and fetal bovine serum. This work not only expands the available enzyme toolbox for XNA synthesis and manipulation, but also provides a promising approach to fabricate DONs with improved stability under the physiological condition.


Asunto(s)
Nanoestructuras , Naftalenosulfonatos , Ácidos Nucleicos , Tetrosas , Ácidos Nucleicos/química , Oligonucleótidos/química , ADN Polimerasa Dirigida por ADN , ADN Nucleotidilexotransferasa , Polímeros , ADN/química
5.
J Am Chem Soc ; 145(16): 9334-9342, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37068218

RESUMEN

Triple-negative breast cancer (TNBC) is highly aggressive with a poor clinical prognosis and no targeted therapy. The c-Myc protein is a master transcription factor and a potential therapeutic target for TNBC. In this study, we develop a PROTAC (PROteolysis TArgeting Chimera) based on TNA (threose nucleic acid) and DNA that effectively targets and degrades c-Myc. The TNA aptamer is selected in vitro to bind the c-Myc/Max heterodimer and appended to the E-box DNA sequence to create a high-affinity, biologically stable bivalent binder. The TNA-E box-pomalidomide (TEP) conjugate specifically degrades endogenous c-Myc/Max, inhibits TNBC cell proliferation, and sensitizes TNBC cells to the cyclin-dependent kinase inhibitor palbociclib in vitro. In a mouse TNBC model, combination therapy with TEP and palbociclib potently suppresses tumor growth. This study offers a promising nucleic acid-based PROTAC modality for both chemical biology studies and therapeutic interventions of TNBC.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Factores de Transcripción , Neoplasias de la Mama Triple Negativas/patología , Genes myc
6.
Chembiochem ; 24(4): e202200651, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36513605

RESUMEN

Catalytic DNA-based fluorescent sensors have enabled cellular imaging of metal ions such as Mg2+ . However, natural DNA is prone to nuclease-mediated degradation. Here, we report the in vitro selection of threose nucleic acid enzymes (TNAzymes) with RNA endonuclease activities. One such TNAzyme, T17-22, catalyzes a site-specific RNA cleavage reaction with a kcat of 0.017 min-1 and KM of 675 nM. A fluorescent sensor based on T17-22 responds to an increasing concentration of Mg2+ with a limit of detection at 0.35 mM. This TNAzyme-based sensor also allows cellular imaging of Mg2+ . This work presents the first proof-of-concept demonstration of using a TNA catalyst in cellular metal ion imaging.


Asunto(s)
ADN Catalítico , ARN , ADN/metabolismo , Metales , Iones
7.
Am J Hematol ; 97(8): 992-1004, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491511

RESUMEN

We developed a T-cell-receptor (TCR) complex-based chimeric antigen receptor (CAR) named Synthetic TCR and Antigen Receptor (STAR). Here, we report pre-clinical and phase I clinical trial data (NCT03953599) of this T-cell therapy for refractory and relapsed (R/R) B-cell acute lymphoblastic leukemia (B-ALL) patients. STAR consists of two protein modules each containing an antibody light or heavy chain variable region and TCR α or ß chain constant region fused to the co-stimulatory domain of OX40. T-cells were transduced with a STAR-OX40 lentiviral vector. A leukemia xenograft mouse model was used to assess the STAR/STAR-OX40 T cell antitumor activity. Eighteen patients with R/R B-ALL were enrolled into the clinical trial. In a xenograft mouse model, STAR-T-cells exhibited superior tumor-specific cytotoxicity compared with conventional CAR-T cells. Incorporating OX40 into STAR further improved the proliferation and persistence of tumor-targeting T-cells. In our clinical trial, 100% of patients achieved complete remission 4 weeks post-STAR-OX40 T-cell infusion and 16/18 (88.9%) patients pursued consolidative allogeneic hematopoietic stem cell transplantation (allo-HSCT). Twelve of 16 patients (75%) remained leukemia-free after a median follow-up of 545 (433-665) days. The two patients without consolidative allo-HSCT relapsed on Day 58 and Day 186. Mild cytokine release syndrome occurred in 10/18 (55.6%) patients, and 2 patients experienced grade III neurotoxicity. Our preclinical studies demonstrate super anti-tumor potency of STAR-OX40 T-cells compared with conventional CAR-T cells. The first-in-human clinical trial shows that STAR-OX40 T-cells are tolerable and an effective therapeutic platform for treating R/R B-ALL.


Asunto(s)
Linfoma de Burkitt , Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Enfermedad Aguda , Animales , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Linfocitos T
8.
J Am Chem Soc ; 143(21): 8154-8163, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34028252

RESUMEN

Threose nucleic acid (TNA) has been considered a potential RNA progenitor in evolution due to its chemical simplicity and base pairing property. Catalytic TNA sequences with RNA ligase activities might have facilitated the transition to the RNA world. Here we report the isolation of RNA ligase TNA enzymes by in vitro selection. The identified TNA enzyme T8-6 catalyzes the formation of a 2'-5' phosphoester bond between a 2',3'-diol and a 5'-triphosphate group, with a kobs of 1.1 × 10-2 min-1 (40 mM Mg2+, pH 9.0). For efficient reaction, T8-6 requires UA|GA at the ligation junction and tolerates variations at other substrate positions. Functional RNAs such as hammerhead ribozyme can be prepared by T8-6-catalyzed ligation, with site-specific introduction of a 2'-5' linkage. Together, this work provides experimental support for TNA as a plausible pre-RNA genetic polymer and also offers an alternative molecular tool for biotechnology.


Asunto(s)
Ácidos Nucleicos/metabolismo , ARN Ligasa (ATP)/metabolismo , Tetrosas/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , ARN Ligasa (ATP)/química , Tetrosas/química
9.
Cell Mol Neurobiol ; 38(3): 727-733, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28825209

RESUMEN

Procalcitonin (PCT) has emerged as a new prognostic inflammatory marker in a variety of diseases. This study aimed to evaluate whether PCT is associated with increased risk of unfavorable outcome in intracerebral hemorrhage (ICH) patients. During January 2015-December 2016, we conducted a prospective cohort investigation involved 251 primary ICH patients who were admitted within 24 h after the onset of symptoms. We assessed serum PCT levels for all patients at admission. The functional outcome after 3 months was evaluated by modified Rankin Scale (mRS) and dichotomized as favorable (mRS 0-2) and unfavorable (mRS 3-6). The independent risk factors for unfavorable outcome and mortality after 3 months were examined by binary logistic regression. Of 251 ICH patients, the median PCT concentration was 0.053 µg/L (interquartile range 0.035-0.078 µg/L). Unfavorable outcome and mortality at 3 months were observed in 161 (64.1%) and 51 (20.3%) patients, respectively. After adjusting for potential confounders, patients with PCT levels in the top quartile (>0.078 ug/L), compared with the lowest quartile (<0.035 µg/L) were more likely to have a higher risk of poor functional outcome [odds ratio (OR) 7.341; 95% confidence interval (CI) 2.770-21.114; P = 0.001] and mortality (OR 7.483; 95% CI 1.871-24.458, P = 0.006). Furthermore, the area under the receiver operating characteristic curve of PCT showed 0.701 (95% CI 0.635-0.767) for worse functional prognosis, and 0.652 (95% CI 0.569-0.735) for mortality. This study demonstrated that elevated PCT levels at admission were independently associated with unfavorable clinical outcome in ICH patients.


Asunto(s)
Calcitonina/sangre , Hemorragia Cerebral/sangre , Hemorragia Cerebral/diagnóstico , Adulto , Anciano , Hemorragia Cerebral/terapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Resultado del Tratamiento
10.
Gene ; 927: 148726, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38909969

RESUMEN

Congenital cataract is one of the leading causes of vision loss in children, and a large proportion of cases are related to genetics. In a Chinese family, we reported a new missense mutation in CRYBA2 (c.223T>C: p.Tyr75His), which can cause autosomal dominant congenital bilateral cataract. We collected blood samples from family members (mother and two sons) and extracted DNA. Through whole-exome sequencing, we discovered a novel unreported mutation. According to relevant ACMG guidelines, this mutation was determined to be a variant of unknown clinical significance. This article further expands the site information on the CRYBA2 mutations.


Asunto(s)
Catarata , Mutación Missense , Cadena A de beta-Cristalina , Femenino , Humanos , Masculino , Pueblo Asiatico/genética , Cadena A de beta-Cristalina/genética , Catarata/genética , Catarata/congénito , Secuenciación del Exoma/métodos
11.
Urolithiasis ; 52(1): 50, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554174

RESUMEN

The purpose of this study was to evaluate the efficacy and safety of flexible ureteroscopy with holmium laser lithotripsy in the management of calyceal diverticular calculi. In this study, we retrospectively analyzed the clinical data of 27 patients with calyceal diverticular calculi admitted to the Department of Urology of the Zigong First People's Hospital from May 2018 to May 2021. Intraoperatively, the diverticular neck was found in all 27 patients, but flexible ureterorenoscopy lithotripsy was not performed in 2 cases because of the slender diverticular neck, and the success rate of the operation was 92.6%. Of the 25 patients with successful lithotripsy, the mean operative time was 76.9 ± 35.5 (43-200) min. There were no serious intraoperative complications such as ureteral perforation, mucosal avulsion, or hemorrhage. Postoperative minor complications (Clavien classification I-II) occurred in 4 (16%) patients. The mean hospital stay was 4.4 ± 1.7 (3-12) days. The stone-free rate was 80% at the 1-month postoperative follow-up. After the second-stage treatment, the stone-free rate was 88%. In 22 cases with complete stone clearance, no stone recurrence was observed at 5.3 ± 2.6 (3-12) months follow-up. This retrospective study demonstrated that flexible ureterorenoscopy with holmium laser is a safe and effective choice for the treatment of calyceal diverticular calculi, because it utilizes the natural lumen of the human body and has the advantages of less trauma, fewer complications, and a higher stone-free rate.


Asunto(s)
Divertículo , Cálculos Renales , Láseres de Estado Sólido , Litotripsia por Láser , Cálculos Ureterales , Humanos , Ureteroscopía/efectos adversos , Estudios Retrospectivos , Láseres de Estado Sólido/efectos adversos , Cálculos Renales/terapia , Ureteroscopios , Litotripsia por Láser/efectos adversos , Divertículo/cirugía , Divertículo/complicaciones , Complicaciones Posoperatorias , Cálculos Ureterales/complicaciones , Resultado del Tratamiento
12.
Heliyon ; 10(5): e27569, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486747

RESUMEN

Gastric cancer (GC) is a malignant tumor with poor prognosis. Studies have shown that cysteine-rich secretory protein LCCL domain containing 1 (CRISPLD1) is associated with tumor progression. However, its role in GC is unclear. The present study aimed to determine the pathogenic mechanism of CRISPLD1 in GC. Analysis of public databases revealed high mRNA expression of CRISPLD1 in GC, which was associated with poor prognosis. Additionally, CRISPLD1 expression levels showed significant correlations with T stage, overall survival events, and stage. Knockdown of CRISPLD1 reduced cell proliferation, invasion, and migration. Furthermore, CRISPLD1 knockdown decreased intracellular calcium levels in GC cells and inhibited the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Treatment with an AKT activator reversed the inhibitory effect of CRISPLD1 knockdown on GC cell migration and invasion. Our findings suggest that CRISPLD1 promotes tumor cell progression in GC by mediating intracellular calcium levels and activating the PI3K-AKT pathway, highlighting CRISPLD1 as a potential therapeutic target for GC.

13.
Theranostics ; 14(2): 662-680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169511

RESUMEN

Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Línea Celular Tumoral , Proteómica , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Proteínas de Neoplasias/genética , Vesículas Extracelulares/metabolismo , Neoplasias/genética
14.
J Am Chem Soc ; 135(9): 3583-91, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23432469

RESUMEN

The emerging field of synthetic genetics provides an opportunity to explore the structural and functional properties of synthetic genetic polymers by in vitro selection. Limiting this process, however, is the availability of enzymes that allow for the synthesis and propagation of genetic information present in unnatural nucleic acid sequences. Here, we report the development of a transcription and reverse-transcription system that can replicate unnatural genetic polymers composed of threose nucleic acids (TNA). TNA is a potential progenitor of RNA in which the natural ribose sugar found in RNA has been replaced with an unnatural threose sugar. Using commercial polymerases that recognize TNA, we demonstrate that an unbiased three-letter and two different biased four-letter genetic alphabets replicate in vitro with high efficiency and high overall fidelity. We validated the replication system by performing one cycle of transcription, selection, reverse transcription, and amplification on a library of 10(14) DNA templates and observed ∼380-fold enrichment after one round of selection for a biotinylated template. We further show that TNA polymers are stable to enzymes that degrade DNA and RNA. These results provide the methodology needed to evolve biologically stable aptamers and enzymes for exobiology and molecular medicine.


Asunto(s)
Ácidos Nucleicos/genética , ARN/genética , Transcripción Genética/genética , Ácidos Nucleicos/química , ARN/química
15.
Adv Mater ; : e2306570, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649139

RESUMEN

Additive manufacturing (AM), which is a process of building objects in a layer-upon-layer fashion from designed models, has received unprecedented attention from research and industry because it offers outstanding merits of flexibility, customization, reduced buy-to-fly ratio, and cost-effectiveness. However, the fatigue performance of safety-critical industrial components fabricated by AM is still far below that obtained from conventional methods. This review discusses the microstructural heterogeneities, randomly dispersed defects, poor surface quality, and complex residual stress generated during the AM process that can negatively impact the fatigue performance of as-printed parts. The difference in microstructural origin of fatigue failure between conventionally manufactured and printed metals is reviewed with particular attention to the effects of the trans-scale microstructures on AM fatigue failure mechanisms. Various methods for mitigating the fatigue issue, including pre-process, inter-process, and post-process treatments, are illustrated. Empirical, semi-empirical, and microstructure-sensitive models are presented to predict fatigue strength and lifetime. Summary and outlooks for future development of the fatigue performance of AM materials are provided.

16.
J Ocul Pharmacol Ther ; 39(7): 456-462, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37311153

RESUMEN

Purpose: Brimonidine is a highly alpha-2 adrenergic agonist, which provides a potential myopia control effect. This study aimed to examine the pharmacokinetics and concentration of brimonidine in the posterior segment tissue of eyes in guinea pigs. Methods: A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was successfully used for brimonidine pharmacokinetics and tissue distribution research in guinea pigs following intravitreal administration (20 µg/eye). Results: Brimonidine concentrations in the retina and sclera were maintained at a high level (>60 ng/g) at 96 h postdosing. Brimonidine concentration peaked in the retina (377.86 ng/g) at 2.41 h and sclera (306.18 ng/g) at 6.98 h. The area under curve (AUC0-∞) was 27,179.99 ng h/g in the retina and 39,529.03 ng h/g in the sclera. The elimination half-life (T1/2e) was 62.43 h in the retina and 67.94 h in the sclera. Conclusions: The results indicated that brimonidine was rapidly absorbed and diffused to the retina and sclera. Meanwhile, it maintained higher posterior tissue concentrations, which can effectively activate the alpha-2 adrenergic receptor. This may provide pharmacokinetic evidence for the inhibition of myopia progression by brimonidine in animal experiments.


Asunto(s)
Miopía , Cuerpo Vítreo , Cobayas , Animales , Tartrato de Brimonidina , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos
17.
J Diabetes Res ; 2022: 1193760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493608

RESUMEN

Background: Pathological neovascularization, which involves a disruption in the balance between angiogenic and antiangiogenic factors under pathological conditions, is the basis of many intraocular diseases. Pigment epithelium-derived factor (PEDF) is a potent natural, endogenous inhibitor of neovascularization because of its antiangiogenic and neuroprotective benefits. However, its application is restricted by its instability and short half-life. The present study is aimed at investigating the cytotoxicity and antiangiogenic effects of PEDF-loaded PEGylated nanoparticles (NP-PEG-PEDF) on high glucose-stimulated human umbilical vein endothelial cells (HUVECs). Methods: In this study, NP-PEG-PEDF were fabricated using the multiple emulsion method for the first time. HUVECs were cultured in a high concentration of glucose (30 mmol/L D-glucose), simulating diabetic conditions. The antiangiogenic effects of vascular endothelial growth factor (VEGF), pure PEDF, and NP-PEG-PEDF on proliferation, migration, and tube formation were evaluated. VEGF secretion in high glucose-stimulated HUVECs was further tested in vitro. Results: NP-PEG-PEDF exhibited low cytotoxicity in HUVECs. Our results indicated that in vitro, NP-PEG-PEDF attenuated diabetes-induced HUVEC proliferation, migration, and tube formation and suppressed VEGF secretion. The apoptosis of diabetes-induced HUVECs occurred in a dose-dependent manner, which showed a statistically significant difference compared with the PEDF treatment group. Conclusion: Our study is the first to demonstrate that NP-PEG-PEDF exert antiangiogenic effects on high glucose-stimulated HUVECs and have the potential to alleviate microvascular dysfunction. These data suggest that the NP-PEG-PEDF delivery system may offer an innovative therapeutic strategy for preventing neovascularization of the fundus.


Asunto(s)
Nanopartículas , Factor A de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis/farmacología , Proteínas del Ojo , Glucosa/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Patológica/metabolismo , Factores de Crecimiento Nervioso , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología , Serpinas , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-35742313

RESUMEN

Near work has been considered to be a potential risk factor for the onset of myopia, but with inadequate evidence. Chinese adolescents use digital devices for near work, such as study and entertainment purposes, especially during the COVID-19 pandemic. In this study, we investigated the influence of prolonged periods of near work on accommodative response, accommodative microfluctuations (AMFs), and pupil diameter between juvenile subjects of myopia and emmetropia. Sixty juveniles (30 myopes and 30 emmetropes) were recruited for the study. Participants were instructed to play a video game on a tablet PC at a distance of 33.3 cm for 40 min. Accommodative response and pupil diameter were measured with an open-field infrared refractometer in High-speed mode. Parameters of the subjects were measured once every 10 min, and analyzed by one-way repeated measure ANOVA for variation tendency. There were no significant differences between emmetropia and myopia groups with respect to age and sex (p > 0.05). The low-frequency component (LFC) of myopia gradually increased with time, reached a peak at 30 min, and then declined (p = 0.043). The high-frequency component (HFC) of myopia also reached a peak at 30 min (p = 0.036). Nevertheless, there was no significant difference in the LFC (p = 0.171) or HFC (p = 0.278) of the emmetropia group at each time point. There was no significant difference in the mean and standard deviation of the accommodative response and pupil diameter both in emmetropic and myopic juveniles. Compared with juvenile emmetropes, myopes exhibit an unstable tendency in their accommodation system for prolonged near work at a certain time point. Accommodative microfluctuations may be a sensitive, objective indicator of fatigue under sustained near work in juvenile myopes.


Asunto(s)
COVID-19 , Miopía , Acomodación Ocular , Adolescente , COVID-19/epidemiología , Emetropía , Humanos , Pandemias
19.
Chem Commun (Camb) ; 58(55): 7698-7701, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35726591

RESUMEN

We report DNA-catalysed alternative RNA splicing in vitro. Using modular DNA catalysts with RNA endonuclease and RNA ligase activities, we show that DNA can modulate RNA structure and activity. Furthermore, we illustrate that such DNA-catalysed reactions can yield, from a common precursor, different splicing isoforms with distinct functions.


Asunto(s)
Empalme Alternativo , Empalme del ARN , ADN/genética , Isoformas de Proteínas , ARN
20.
RSC Chem Biol ; 3(10): 1276-1281, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36320890

RESUMEN

Enzymatic protein ligation has become the most powerful and widely used method for high-precision atomic force microscopy single-molecule force spectroscopy (AFM-SMFS) study of protein mechanics. However, this methodology typically requires the functionalization of the glass surface with a corresponding peptide sequence/tag for enzymatic recognition and multiple steps are needed. Thus, it is time-consuming and a high level of experience is needed for reliable results. To solve this problem, we simplified the procedure using two strategies both based on asparaginyl endopeptidase (AEP). First, we designed a heterobifunctional peptide-based crosslinker, GL-peptide-propargylglycine, which links to an N 3-functionalized surface via the click reaction. Then, the target protein with a C-terminal NGL sequence can be immobilized via the AEP-mediated ligation. Furthermore, we took advantage of the direct ligation between primary amino in a small molecule and protein with C-terminal NGL by AEP. Thus, the target protein can be immobilized on an amino-functionalized surface via AEP in one step. Both approaches were successfully applied to the AFM-SMFS study of eGFP, showing consistent single-molecule results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA