Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 15(11): e1008454, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31697683

RESUMEN

α-catenin is a key protein of adherens junctions (AJs) with mechanosensory properties. It also acts as a tumor suppressor that limits tissue growth. Here we analyzed the function of Drosophila α-Catenin (α-Cat) in growth regulation of the wing epithelium. We found that different α-Cat levels led to a differential activation of Hippo/Yorkie or JNK signaling causing tissue overgrowth or degeneration, respectively. α-Cat can modulate Yorkie-dependent tissue growth through recruitment of Ajuba, a negative regulator of Hippo signaling to AJs but also through a mechanism independent of Ajuba recruitment to AJs. Both mechanosensory regions of α-Cat, the M region and the actin-binding domain (ABD), contribute to growth regulation. Whereas M is dispensable for α-Cat function in the wing, individual M domains (M1, M2, M3) have opposing effects on growth regulation. In particular, M1 limits Ajuba recruitment. Loss of M1 causes Ajuba hyper-recruitment to AJs, promoting tissue-tension independent overgrowth. Although M1 binds Vinculin, Vinculin is not responsible for this effect. Moreover, disruption of mechanosensing of the α-Cat ABD affects tissue growth, with enhanced actin interactions stabilizing junctions and leading to tissue overgrowth. Together, our findings indicate that α-Cat acts through multiple mechanisms to control tissue growth, including regulation of AJ stability, mechanosensitive Ajuba recruitment, and dynamic direct F-actin interactions.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas con Dominio LIM/genética , Alas de Animales/crecimiento & desarrollo , alfa Catenina/genética , Citoesqueleto de Actina/genética , Actinas/genética , Uniones Adherentes/genética , Animales , Muerte Celular/genética , Citoesqueleto/genética , Drosophila melanogaster/crecimiento & desarrollo , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Sistema de Señalización de MAP Quinasas/genética , Mecanotransducción Celular/genética , Proteínas Nucleares/genética , Dominios Proteicos/genética , Proteínas Serina-Treonina Quinasas/genética , Transactivadores/genética , Vinculina/genética , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
2.
Semin Cell Dev Biol ; 67: 153-160, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27481581

RESUMEN

Epithelial tissues form and repair in complex processes influenced by molecular and physical factors. Recent years have witnessed the development of new microscopy modalities that push the limits of spatial resolution, and enable long-term monitoring of developing animals. Increasingly, methods from the physical sciences are used to investigate the role of mechanical forces in living organisms. The application of these new technologies to developmental biology has led to ever-expanding volumes of data that must be interpreted and integrated. For these reasons, computer models are being applied to investigate tissue morphogenesis. Here, we discuss the use of vertex models to study the morphogenesis of epithelial tissues. We motivate the use of computational models and consider their advantages and limitations. We provide an introduction to the theoretical foundation of vertex models and describe how they can integrate mechanical and biochemical dynamics. Finally, we review recent advances in the application of vertex models to investigate dorsal closure, a morphogenetic process in the Drosophila embryo with parallels to both embryonic development and wound repair in vertebrate organisms.


Asunto(s)
Cadherinas/genética , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Epiteliales/metabolismo , Mecanotransducción Celular , Animales , Fenómenos Biomecánicos , Cadherinas/metabolismo , Citoesqueleto/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Células Epiteliales/citología , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Morfogénesis/genética , Estrés Mecánico , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura
3.
Lancet Planet Health ; 8(10): e778-e789, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39393379

RESUMEN

A global initiative to develop low-carbon, resilient health systems-the COP26 Health Programme-launched at the UN Framework Convention on Climate Change 26th Conference of the Parties (COP26) in 2021. As of May, 2024, 83 nations have committed to participate in this initiative. This analysis evaluates the effectiveness of existing and proposed indicators towards public monitoring and accountability to these commitments. Our findings reveal substantial gaps in data availability and indicator relevance, with many countries reporting process indicators that do not reflect actual progress towards achieving sustainable health-care systems. We found a dearth of suitable indicators and an urgent need to develop robust ones that are adaptable to different health-care system contexts. These indicators should be designed to capture tangible outcomes, support policy making, and prevent greenwashing. Integration of more robust indicators into independent scientific monitoring can support systematic inclusion of health care in global climate strategies, thereby enhancing the overall effectiveness of the COP26 Health Programme.


Asunto(s)
Cambio Climático , Atención a la Salud , Humanos , Salud Global , Responsabilidad Social , Desarrollo Sostenible , Carbono
4.
Cells Dev ; 168: 203721, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34271226

RESUMEN

Compartment boundaries prevent cell mixing during animal development. In the early Drosophila embryo, the mesectoderm is a group of glial precursors that separate ectoderm and mesoderm, forming the ventral midline. Mesectoderm cells undergo one round of oriented divisions during axis elongation and are eventually internalized 6 h later. Using spinning disk confocal microscopy and image analysis, we found that after dividing, mesectoderm cells reversed their planar polarity. The polarity factor Bazooka was redistributed to mesectoderm-mesectoderm cell interfaces, and the molecular motor non-muscle Myosin II and its upstream activator Rho-kinase (Rok) accumulated at mesectoderm-ectoderm (ME) interfaces, forming supracellular cables flanking the mesectoderm on either side of the tissue. Laser ablation revealed the presence of increased tension at ME cables, where Myosin was stabilized, as shown by fluorescence recovery after photobleaching. We used laser nanosurgery to reduce tension at the ME boundary, and we found that Myosin fluorescence decreased rapidly, suggesting a role for tension in ME boundary maintenance. Mathematical modelling predicted that increased tension at the ME boundary was necessary to prevent the premature establishment of contacts between the two ectodermal sheets on opposite sides of the mesectoderm, thus controlling the timing of mesectoderm internalization. We validated the model in vivo: Myosin inhibition disrupted the linearity of the ME boundary and resulted in early internalization of the mesectoderm. Our results suggest that the redistribution of Rok polarizes Myosin and Bazooka within the mesectoderm to establish tissue boundaries, and that ME boundaries control the timely internalization of the mesectoderm as embryos develop.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster , Miosina Tipo II , Miosinas
5.
Nat Commun ; 11(1): 965, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075961

RESUMEN

The sarco-endoplasmic reticulum (SR/ER) plays an important role in the development and progression of many heart diseases. However, many aspects of its structural organization remain largely unknown, particularly in cells with a highly differentiated SR/ER network. Here, we report a cardiac enriched, SR/ER membrane protein, REEP5 that is centrally involved in regulating SR/ER organization and cellular stress responses in cardiac myocytes. In vitro REEP5 depletion in mouse cardiac myocytes results in SR/ER membrane destabilization and luminal vacuolization along with decreased myocyte contractility and disrupted Ca2+ cycling. Further, in vivo CRISPR/Cas9-mediated REEP5 loss-of-function zebrafish mutants show sensitized cardiac dysfunction upon short-term verapamil treatment. Additionally, in vivo adeno-associated viral (AAV9)-induced REEP5 depletion in the mouse demonstrates cardiac dysfunction. These results demonstrate the critical role of REEP5 in SR/ER organization and function as well as normal heart function and development.


Asunto(s)
Corazón/fisiopatología , Proteínas de la Membrana/deficiencia , Retículo Sarcoplasmático/patología , Animales , Calcio/metabolismo , Células Cultivadas , Estrés del Retículo Endoplásmico , Técnicas de Inactivación de Genes , Silenciador del Gen , Corazón/crecimiento & desarrollo , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Pez Cebra
6.
Dev Cell ; 45(5): 551-564.e4, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29804877

RESUMEN

The early Drosophila embryo is a large syncytial cell that compartmentalizes mitotic spindles with furrows. Before furrow ingression, an Arp2/3 actin cap forms above each nucleus and is encircled by actomyosin. We investigated how these networks transform a flat cortex into a honeycomb-like compartmental array. The growing caps circularize and ingress upon meeting their actomyosin borders, which become the furrow base. Genetic perturbations indicate that the caps physically displace their borders and, reciprocally, that the borders resist and circularize their caps. These interactions create an actomyosin cortex arrayed with circular caps. The Rac-GEF Sponge, Rac-GTP, Arp3, and actin coat the caps as a growing material that can drive cortical bending for initial furrow ingression. Additionally, laser ablations indicate that actomyosin contraction squeezes the cytoplasm, producing counterforces that swell the caps. Thus, Arp2/3 caps form clearances of the actomyosin cortex and control buckling and swelling of these clearances for metaphase compartmentalization.


Asunto(s)
Actinas/metabolismo , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Células Gigantes/fisiología , Huso Acromático/fisiología , Animales , Membrana Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero/citología , Células Gigantes/citología , Microtúbulos/metabolismo
7.
Elife ; 52016 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-26747941

RESUMEN

Axis elongation is a conserved process in which the head-to-tail or anterior-posterior (AP) axis of an embryo extends. In Drosophila, cellular rearrangements drive axis elongation. Cells exchange neighbours by converging into transient multicellular vertices which resolve through the assembly of new cell interfaces parallel to the AP axis. We found that new interfaces elongate in pulses correlated with periodic contractions of the surrounding cells. Inhibiting actomyosin contractility globally, or specifically in the cells around multicellular vertices, disrupted the rate and directionality of new interface assembly. Laser ablation indicated that new interfaces sustained greater tension than non-elongating ones. We developed a method to apply ectopic tension and found that increasing AP tension locally increased the elongation rate of new edges by more than twofold. Increasing dorsal-ventral tension resulted in vertex resolution perpendicular to the AP direction. We propose that local, periodic contractile forces polarize vertex resolution to drive Drosophila axis elongation.


Asunto(s)
Tipificación del Cuerpo , Drosophila/embriología , Fenómenos Mecánicos , Animales , Embrión no Mamífero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA