Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.398
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(7998): 411-418, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297130

RESUMEN

Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer1-3, degenerative disorders4 and organ ischaemia-reperfusion injury (IRI)5,6. Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene. Mechanistically, 7-DHC dictates ferroptosis surveillance by using the conjugated diene to exert its anti-phospholipid autoxidation function and shields plasma and mitochondria membranes from phospholipid autoxidation. Importantly, blocking the biosynthesis of endogenous 7-DHC by pharmacological targeting of EBP induces ferroptosis and inhibits tumour growth, whereas increasing the 7-DHC level by inhibiting DHCR7 effectively promotes cancer metastasis and attenuates the progression of kidney IRI, supporting a critical function of this axis in vivo. In conclusion, our data reveal a role of 7-DHC as a natural anti-ferroptotic metabolite and suggest that pharmacological manipulation of 7-DHC levels is a promising therapeutic strategy for cancer and IRI.


Asunto(s)
Deshidrocolesteroles , Ferroptosis , Humanos , Membrana Celular/metabolismo , Colesterol/biosíntesis , Colesterol/metabolismo , Sistemas CRISPR-Cas/genética , Deshidrocolesteroles/metabolismo , Genoma Humano , Enfermedades Renales/metabolismo , Membranas Mitocondriales/metabolismo , Metástasis de la Neoplasia , Neoplasias/metabolismo , Neoplasias/patología , Fosfolípidos/metabolismo , Daño por Reperfusión/metabolismo
2.
Immunity ; 50(3): 738-750.e7, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30770248

RESUMEN

Systemic immunosuppression greatly affects the chemotherapeutic antitumor effect. Here, we showed that CD19+ extracellular vesicles (EVs) from B cells through CD39 and CD73 vesicle-incorporated proteins hydrolyzed ATP from chemotherapy-treated tumor cells into adenosine, thus impairing CD8+ T cell responses. Serum CD19+ EVs were increased in tumor-bearing mice and patients. Patients with fewer serum CD19+ EVs had a better prognosis after chemotherapy. Upregulated hypoxia-inducible factor-1α (HIF-1α) promoted B cells to release CD19+ EVs by inducing Rab27a mRNA transcription. Rab27a or HIF-1α deficiency in B cells inhibited CD19+ EV production and improved the chemotherapeutic antitumor effect. Silencing of Rab27a in B cells by inactivated Epstein-Barr viruses carrying Rab27a siRNA greatly improved chemotherapeutic efficacy in humanized immunocompromised NOD PrkdcscidIl2rg-/- mice. Thus, decreasing CD19+ EVs holds high potential to improve the chemotherapeutic antitumor effect.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Vesículas Extracelulares/inmunología , Animales , Antígenos CD19/inmunología , Línea Celular , Línea Celular Tumoral , Femenino , Células HEK293 , Herpesvirus Humano 4/inmunología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Células 3T3 NIH , ARN Mensajero/inmunología , Transcripción Genética/inmunología , Proteínas rab27 de Unión a GTP/inmunología
3.
Nature ; 612(7938): 72-77, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36352229

RESUMEN

Advancements in many modern technologies rely on the continuous need for materials discovery. However, the design of synthesis routes leading to new and targeted solid-state materials requires understanding of reactivity patterns1-3. Advances in synthesis science are necessary to increase efficiency and accelerate materials discovery4-10. We present a highly effective methodology for the rational discovery of materials using high-temperature solutions or fluxes having tunable solubility. This methodology facilitates product selection by projecting the free-energy landscape into real synthetic variables: temperature and flux ratio. We demonstrate the effectiveness of this technique by synthesizing compounds in the chalcogenide system of A(Ba)-Cu-Q(O) (Q = S or Se; A = Na, K or Rb) using mixed AOH/AX (A = Li, Na, K or Rb; X = Cl or I) fluxes. We present 30 unreported compounds or compositions, including more than ten unique structural types, by systematically varying the temperature and flux ratios without requiring changing the proportions of starting materials. Also, we found that the structural dimensionality of the compounds decreases with increasing reactant solubility and temperature. This methodology serves as an effective general strategy for the rational discovery of inorganic solids.

4.
Nature ; 606(7913): 305-312, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676429

RESUMEN

Li- and Mn-rich (LMR) cathode materials that utilize both cation and anion redox can yield substantial increases in battery energy density1-3. However, although voltage decay issues cause continuous energy loss and impede commercialization, the prerequisite driving force for this phenomenon remains a mystery3-6 Here, with in situ nanoscale sensitive coherent X-ray diffraction imaging techniques, we reveal that nanostrain and lattice displacement accumulate continuously during operation of the cell. Evidence shows that this effect is the driving force for both structure degradation and oxygen loss, which trigger the well-known rapid voltage decay in LMR cathodes. By carrying out micro- to macro-length characterizations that span atomic structure, the primary particle, multiparticle and electrode levels, we demonstrate that the heterogeneous nature of LMR cathodes inevitably causes pernicious phase displacement/strain, which cannot be eliminated by conventional doping or coating methods. We therefore propose mesostructural design as a strategy to mitigate lattice displacement and inhomogeneous electrochemical/structural evolutions, thereby achieving stable voltage and capacity profiles. These findings highlight the significance of lattice strain/displacement in causing voltage decay and will inspire a wave of efforts to unlock the potential of the broad-scale commercialization of LMR cathode materials.

5.
Proc Natl Acad Sci U S A ; 121(28): e2405100121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38950372

RESUMEN

N6-methyladenosine (m6A) is a fundamentally important RNA modification for gene regulation, whose function is achieved through m6A readers. However, whether and how m6A readers play regulatory roles during fruit ripening and quality formation remains unclear. Here, we characterized SlYTH2 as a tomato m6A reader protein and profiled the binding sites of SlYTH2 at the transcriptome-wide level. SlYTH2 undergoes liquid-liquid phase separation and promotes RNA-protein condensate formation. The target mRNAs of SlYTH2, namely m6A-modified SlHPL and SlCCD1B associated with volatile synthesis, are enriched in SlYTH2-induced condensates. Through polysome profiling assays and proteomic analysis, we demonstrate that knockout of SlYTH2 expedites the translation process of SlHPL and SlCCD1B, resulting in augmented production of aroma-associated volatiles. This aroma enrichment significantly increased consumer preferences for CRISPR-edited fruit over wild type. These findings shed light on the underlying mechanisms of m6A in plant RNA metabolism and provided a promising strategy to generate fruits that are more attractive to consumers.


Asunto(s)
Adenosina , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Biosíntesis de Proteínas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Odorantes/análisis
6.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38546326

RESUMEN

Chimeric antigen receptor T-cell (CAR-T) immunotherapy, a novel approach for treating blood cancer, is associated with the production of cytokine release syndrome (CRS), which poses significant safety concerns for patients. Currently, there is limited knowledge regarding CRS-related cytokines and the intricate relationship between cytokines and cells. Therefore, it is imperative to explore a reliable and efficient computational method to identify cytokines associated with CRS. In this study, we propose Meta-DHGNN, a directed and heterogeneous graph neural network analysis method based on meta-learning. The proposed method integrates both directed and heterogeneous algorithms, while the meta-learning module effectively addresses the issue of limited data availability. This approach enables comprehensive analysis of the cytokine network and accurate prediction of CRS-related cytokines. Firstly, to tackle the challenge posed by small datasets, a pre-training phase is conducted using the meta-learning module. Consequently, the directed algorithm constructs an adjacency matrix that accurately captures potential relationships in a more realistic manner. Ultimately, the heterogeneous algorithm employs meta-photographs and multi-head attention mechanisms to enhance the realism and accuracy of predicting cytokine information associated with positive labels. Our experimental verification on the dataset demonstrates that Meta-DHGNN achieves favorable outcomes. Furthermore, based on the predicted results, we have explored the multifaceted formation mechanism of CRS in CAR-T therapy from various perspectives and identified several cytokines, such as IFNG (IFN-γ), IFNA1, IFNB1, IFNA13, IFNA2, IFNAR1, IFNAR2, IFNGR1 and IFNGR2 that have been relatively overlooked in previous studies but potentially play pivotal roles. The significance of Meta-DHGNN lies in its ability to analyze directed and heterogeneous networks in biology effectively while also facilitating CRS risk prediction in CAR-T therapy.


Asunto(s)
Citocinas , Receptores Quiméricos de Antígenos , Humanos , Síndrome de Liberación de Citoquinas , Receptores Quiméricos de Antígenos/genética , Aprendizaje , Redes Neurales de la Computación , Interferón-alfa
7.
Proc Natl Acad Sci U S A ; 120(44): e2304148120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844213

RESUMEN

Premelting of ice, a quasi-liquid layer (QLL) at the surface below the melting temperature, was first postulated by Michael Faraday 160 y ago. Since then, it has been extensively studied theoretically and experimentally through many techniques. Existing work has been performed predominantly on hexagonal ice, at conditions close to the triple point. Whether the same phenomenon can persist at much lower pressure and temperature, where stacking disordered ice sublimates directly into water vapor, remains unclear. Herein, we report direct observations of surface premelting on ice nanocrystals below the sublimation temperature using transmission electron microscopy (TEM). Similar to what has been reported on hexagonal ice, a QLL is found at the solid-vapor interface. It preferentially decorates certain facets, and its thickness increases as the phase transition temperature is approached. In situ TEM reveals strong diffusion of the QLL, while electron energy loss spectroscopy confirms its amorphous nature. More significantly, the premelting observed in this work is thought to be related to the metastable low-density ultraviscous water, instead of ambient liquid water as in the case of hexagonal ice. This opens a route to understand premelting and grassy liquid state, far away from the normal water triple point.

8.
Genes Dev ; 32(23-24): 1537-1549, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30463901

RESUMEN

Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the ß-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.


Asunto(s)
Regulación de la Expresión Génica/genética , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , gamma-Globinas/genética , Sitios de Unión , Línea Celular , Activación Enzimática/genética , Epigénesis Genética/genética , Células Eritroides/metabolismo , Silenciador del Gen , Células HEK293 , Humanos , Células K562 , Miembro 1 del Grupo C de la Subfamilia 2 de Receptores Nucleares/metabolismo , Dominios Proteicos , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/metabolismo
9.
J Virol ; 98(2): e0156723, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38197631

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Herpesvirus Humano 8 , Infección Latente , Humanos , Línea Celular Tumoral , Regulación Viral de la Expresión Génica , Genoma Viral , Herpesvirus Humano 8/fisiología , FN-kappa B/metabolismo , Activación Viral , Latencia del Virus , Replicación Viral , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo
10.
Am J Pathol ; 194(2): 280-295, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37981220

RESUMEN

In this study, knockout of FOXO3 was found to impair intervertebral disc maturation and homeostasis in postnatal mice as well as facilitating extracellular matrix degradation. RNA sequencing can uncover disease-related gene expression and investigate disease pathophysiology. High-throughput transcriptome sequencing and experimental validations were used to identify the essential gene and mechanism involved in intervertebral disc degeneration (IDD). Nucleus pulposus (NP) tissue samples were collected from the mice with conditional knockout of FOXO3 (FOXO3 KO) for high-throughput sequencing, followed by screening of differentially expressed lncRNAs and mRNAs. The mRNAs were subjected to GO and KEGG enrichment analyses. Interactions among FOXO3, HOTTIP, miR-615-3p, and COL2A1 were analyzed. NP cells were subjected to a series of mimics, inhibitors, overexpression plasmids, and shRNAs to validate the mechanisms of FOXO3 in controlling HOTTIP/miR-615-3p/COL2A1 in IDD. Mechanistically, FOXO3 transcriptionally activated HOTTIP, facilitated the competitive HOTTIP binding to miR-615-3p, and increased the expression of the miR-615-3p target gene COL2A1. Thus, NP cell proliferation was induced, cell apoptosis was diminished, resulting in delayed development of IDD. Based on these data, the transcription factor FOXO3 may decrease miR-615-3p binding to COL2A1 and up-regulate COL2A1 expression by activating HOTTIP transcription, which in turn inhibits NP cell apoptosis and promotes its proliferation, to prevent the degradation of intervertebral disc matrix and maintain the normal physiological function of intervertebral disc, thereby preventing the occurrence and development of IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , MicroARNs , Núcleo Pulposo , Ratones , Animales , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , Núcleo Pulposo/metabolismo , ARN Mensajero/metabolismo , Apoptosis/genética
11.
Exp Cell Res ; 437(1): 113999, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494067

RESUMEN

The heightened prevalence and accelerated progression of periodontitis in individuals with diabetes is primarily attributed to inflammatory responses in human periodontal ligament cells (HPDLCs). This study is aimed at delineating the regulatory mechanism of nucleotide-binding oligomerization domain-like receptors (NLRs) in mediating inflammation incited by muramyl dipeptide (MDP) in HPDLCs, under the influence of advanced glycation end products (AGEs), metabolic by-products associated with diabetes. We performed RNA-seq in HPDLCs induced by AGEs treatment and delineated activation markers for the receptor of AGEs (RAGE). It showed that advanced glycation end products modulate inflammatory responses in HPDLCs by activating NLRP1 and NLRP3 inflammasomes, which are further regulated through the NF-κB signaling pathway. Furthermore, AGEs synergize with NOD2, NLRP1, and NLRP3 inflammasomes to augment MDP-induced inflammation significantly.


Asunto(s)
Diabetes Mellitus , FN-kappa B , Humanos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ligamento Periodontal/metabolismo , Transducción de Señal , Inflamación , Productos Finales de Glicación Avanzada/farmacología
12.
BMC Bioinformatics ; 25(1): 197, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769505

RESUMEN

BACKGROUND: CAR-T cell therapy represents a novel approach for the treatment of hematologic malignancies and solid tumors. However, its implementation is accompanied by the emergence of potentially life-threatening adverse events known as cytokine release syndrome (CRS). Given the escalating number of patients undergoing CAR-T therapy, there is an urgent need to develop predictive models for severe CRS occurrence to prevent it in advance. Currently, all existing models are based on decision trees whose accuracy is far from meeting our expectations, and there is a lack of deep learning models to predict the occurrence of severe CRS more accurately. RESULTS: We propose PrCRS, a deep learning prediction model based on U-net and Transformer. Given the limited data available for CAR-T patients, we employ transfer learning using data from COVID-19 patients. The comprehensive evaluation demonstrates the superiority of the PrCRS model over other state-of-the-art methods for predicting CRS occurrence. We propose six models to forecast the probability of severe CRS for patients with one, two, and three days in advance. Additionally, we present a strategy to convert the model's output into actual probabilities of severe CRS and provide corresponding predictions. CONCLUSIONS: Based on our findings, PrCRS effectively predicts both the likelihood and timing of severe CRS in patients, thereby facilitating expedited and precise patient assessment, thus making a significant contribution to medical research. There is little research on applying deep learning algorithms to predict CRS, and our study fills this gap. This makes our research more novel and significant. Our code is publicly available at https://github.com/wzy38828201/PrCRS . The website of our prediction platform is: http://prediction.unicar-therapy.com/index-en.html .


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Aprendizaje Profundo , Inmunoterapia Adoptiva , Humanos , COVID-19/terapia , Síndrome de Liberación de Citoquinas/terapia , Síndrome de Liberación de Citoquinas/etiología , Inmunoterapia Adoptiva/métodos , SARS-CoV-2 , Neoplasias/terapia
13.
Plant J ; 113(6): 1295-1309, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651024

RESUMEN

Anthocyanins are important secondary metabolites in plants. They are important for human health because of their antioxidant activities and because their dietary intake reduces the incidence of cardiovascular and cerebrovascular diseases and tumors. The biosynthesis of anthocyanins and its regulation in fruits and vegetables is a global research hotspot. Compared with cultivated apples, the red-fleshed apple is a relatively new and popular commodity in the market. Previous studies on red-fleshed apples have focused on the basis for the high anthocyanin content and the transcriptional regulation of anthocyanin synthesis. In the present study, we focused on the mechanism of microRNA-mediated post-transcriptional regulation of anthocyanin synthesis in red-fleshed apples. We identified a microRNA (miRNA), designated mdm-miR858, that is specifically expressed in the flesh of apple fruit. The expression level of miR858 was significantly lower in red-fleshed apples than in white-fleshed apples. The overexpression of mdm-miR858 significantly inhibited anthocyanin accumulation, whereas the silencing of mdm-miR858 promoted anthocyanin synthesis in STTM858 transgenic apple calli. Further analyses showed that mdm-miR858 targets the transcription factor genes MdMYB9 and MdMYBPA1 to participate anthocyanin accumulation in apple. Our results also show that MdHY5, a transcription factor in the light signaling pathway, can bind to the promoter of mdm-miR858 to inhibit its transcription, thereby regulating anthocyanin synthesis. Based on our results, we describe a novel HY5-miR858-MYB loop involved in the modulation of anthocyanin biosynthesis. These findings provide new information about how plant miRNAs regulate anthocyanin anabolism and provide a basis for breeding new anthocyanin-rich, red-fleshed apple varieties.


Asunto(s)
Malus , Humanos , Malus/genética , Malus/metabolismo , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Frutas/genética , Frutas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Hepatol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821360

RESUMEN

BACKGROUND & AIMS: Recurrent primary biliary cholangitis (rPBC) develops in approximately 30% of patients and negatively impacts graft and overall patient survival after liver transplantation (LT). There is a lack of data regarding the response rate to ursodeoxycholic acid (UDCA) in rPBC. We evaluated a large, international, multi-center cohort to assess the performance of PBC scores in predicting the risk of graft and overall survival after LT in patients with rPBC. METHODS: A total of 332 patients with rPBC after LT were evaluated from 28 centers across Europe, North and South America. The median age at the time of rPBC was 58.0 years [IQR 53.2-62.6], and 298 patients (90%) were female. The biochemical response was measured with serum levels of alkaline phosphatase (ALP) and bilirubin, and Paris-2, GLOBE and UK-PBC scores at 1 year after UDCA initiation. RESULTS: During a median follow-up of 8.7 years [IQR 4.3-12.9] after rPBC diagnosis, 52 patients (16%) had graft loss and 103 (31%) died. After 1 year of UDCA initiation the histological stage at rPBC (hazard ratio [HR] 3.97, 95% CI 1.36-11.55, p = 0.01), use of prednisone (HR 3.18, 95% CI 1.04-9.73, p = 0.04), ALP xULN (HR 1.59, 95% CI 1.26-2.01, p <0.001), Paris-2 criteria (HR 4.14, 95% CI 1.57-10.92, p = 0.004), GLOBE score (HR 2.82, 95% CI 1.71-4.66, p <0.001), and the UK-PBC score (HR 1.06, 95% CI 1.03-1.09, p <0.001) were associated with graft survival in the multivariate analysis. Similar results were observed for overall survival. CONCLUSION: Patients with rPBC and disease activity, as indicated by standard PBC risk scores, have impaired outcomes, supporting efforts to treat recurrent disease in similar ways to pre-transplant PBC. IMPACT AND IMPLICATIONS: One in three people who undergo liver transplantation for primary biliary cholangitis develop recurrent disease in their new liver. Patients with recurrent primary biliary cholangitis and incomplete response to ursodeoxycholic acid, according to conventional prognostic scores, have worse clinical outcomes, with higher risk of graft loss and mortality in similar ways to the disease before liver transplantation. Our results supportsupport efforts to treat recurrent disease in similar ways to pre-transplant primary biliary cholangitis.

15.
Small ; 20(28): e2311851, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38312088

RESUMEN

Aqueous Zn-metal battery is considered as a promising energy-storage system. However, uncontrolled zinc dendrite growth is the main cause of short-circuit failure in aqueous Zn-based batteries. One of the most efficient and convenient strategies to alleviate this issue is to introduce appropriate zincophilic nucleation sites to guide zinc metal deposition and regulate crystal growth. Herein, this work proposes Bi2O3/Bi nanosheets anchored on the cell wall surface of the 3D porous conductive host as the Zn deposition sites to modulate Zn deposition behavior and hence inhibit the zinc dendrite growth. Density functional theory and experimental results demonstrate that Bi2O3 has a super zinc binding energy and strong adsorption energy with zinc (002) plane, as a super-zincophilic nucleation site, which results in the deposition of zinc preferentially along the horizontal direction of (002) crystal plane, fundamentally avoids the formation of Zn dendrites. Benefiting from the synergistic effect Bi2O3/Bi zincophilic sites and 3D porous structure in the B-BOGC host, the electrochemical performance of the constructed Zn-based battery is significantly improved. As a result, the Zn anode cycles for 1500 cycles at 50 mA cm-2 and 1.0 mAh cm-2. Meanwhile, the Zn@B-BOGC//MnO2 full cell can operate stably for 2000 cycles at 2.0 A g-1.

16.
Mol Carcinog ; 63(6): 1106-1116, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38441297

RESUMEN

Bladder cancer (BC) is a common and malignant tumor of the urinary tract, and its treatment options are limited. Tectoridin (TEC) has antitumor activity against prostate and colon cancer, but its effects on BC are poorly understood. BC cells were treated with increasing concentrations of TEC, and its effects on cell proliferation, migration, invasiveness, and apoptosis were assessed. Xenograft mouse model was used to evaluate the influences of TEC on BC tumor growth. Western blot analysis was conducted to explore the downstream pathways affected by TEC. TEC treatment decreased BC cell viability in a dose-dependent manner (IC50 ≈ 25 µM), and inhibited cell proliferation, migration, and invasiveness while promoting apoptosis. Clinical analysis revealed high expression of RAB27B in BC tumor tissues, particularly in advanced stages, correlating with an unfavorable prognosis. In vitro experiments demonstrated that TEC suppressed the PI3K/MAPK pathway by targeting RAB27B, and overexpression of RAB27B counteracted the antitumor effects of TEC. In xenograft models, TEC administration suppressed tumor growth, reduced tumor volume, inhibited cell proliferation, and suppressed the PI3K/MAPK pathway, highlighting its potential as an inhibitor of tumor growth. TEC suppresses BC tumor growth by targeting RAB27B and inactivating the PI3K/MAPK signaling and may provide a promising therapeutic target for BC treatment.


Asunto(s)
Apoptosis , Proliferación Celular , Fosfatidilinositol 3-Quinasas , Neoplasias de la Vejiga Urinaria , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al GTP rab , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Humanos , Animales , Proliferación Celular/efectos de los fármacos , Ratones , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos
17.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36184189

RESUMEN

Short hairpin RNA (shRNA)-mediated gene silencing is an important technology to achieve RNA interference, in which the design of potent and reliable shRNA molecules plays a crucial role. However, efficient shRNA target selection through biological technology is expensive and time consuming. Hence, it is crucial to develop a more precise and efficient computational method to design potent and reliable shRNA molecules. In this work, we present an interpretable classification model for the shRNA target prediction using the Light Gradient Boosting Machine algorithm called ILGBMSH. Rather than utilizing only the shRNA sequence feature, we extracted 554 biological and deep learning features, which were not considered in previous shRNA prediction research. We evaluated the performance of our model compared with the state-of-the-art shRNA target prediction models. Besides, we investigated the feature explanation from the model's parameters and interpretable method called Shapley Additive Explanations, which provided us with biological insights from the model. We used independent shRNA experiment data from other resources to prove the predictive ability and robustness of our model. Finally, we used our model to design the miR30-shRNA sequences and conducted a gene knockdown experiment. The experimental result was perfectly in correspondence with our expectation with a Pearson's coefficient correlation of 0.985. In summary, the ILGBMSH model can achieve state-of-the-art shRNA prediction performance and give biological insights from the machine learning model parameters.


Asunto(s)
Algoritmos , Aprendizaje Automático , ARN Interferente Pequeño/genética
18.
J Transl Med ; 22(1): 255, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459501

RESUMEN

OBJECTIVE: Benign prostatic hyperplasia (BPH) is common in elder men. The current study aims to identify differentially expressed genes (DEGs) in hyperplastic prostate and to explore the role of Nik related kinase (NRK) in BPH. METHODS: Four datasets including three bulk and one single cell RNA-seq (scRNA-seq) were obtained to perform integrated bioinformatics. Cell clusters and specific metabolism pathways were analyzed. The localization, expression and functional activity of NRK was investigated via RT-PCR, western-blot, immunohistochemical staining, flow cytometry, wound healing assay, transwell assay and CCK-8 assay. RESULTS: A total of 17 DEGs were identified by merging three bulk RNA-seq datasets. The findings of integrated single-cell analysis showed that NRK remarkably upregulated in fibroblasts and SM cells of hyperplasia prostate. Meanwhile, NRK was upregulated in BPH samples and localized almost in stroma. The expression level of NRK was significantly correlated with IPSS and Qmax of BPH patients. Silencing of NRK inhibited stromal cell proliferation, migration, fibrosis and EMT process, promoted apoptosis and induced cell cycle arrest, while overexpression of NRK in prostate epithelial cells showed opposite results. Meanwhile, induced fibrosis and EMT process were rescued by knockdown of NRK. Furthermore, expression level of NRK was positively correlated with that of α-SMA, collagen-I and N-cadherin, negatively correlated with that of E-cadherin. CONCLUSION: Our novel data identified NRK was upregulated in hyperplastic prostate and associated with prostatic stromal cell proliferation, apoptosis, cell cycle, migration, fibrosis and EMT process. NRK may play important roles in the development of BPH and may be a promising therapeutic target for BPH/LUTS.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Próstata , Hiperplasia Prostática , Proteínas Serina-Treonina Quinasas , Masculino , Humanos , Anciano , Próstata/metabolismo , Hiperplasia/metabolismo , Hiperplasia/patología , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Fibrosis
19.
Ann Neurol ; 94(2): 232-244, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177846

RESUMEN

OBJECTIVE: VGF is proposed as a potential therapeutic target for Alzheimer's (AD) and other neurodegenerative conditions. The cell-type specific and, separately, peptide specific associations of VGF with pathologic and cognitive outcomes remain largely unknown. We leveraged gene expression and protein data from the human neocortex and investigated the VGF associations with common neuropathologies and late-life cognitive decline. METHODS: Community-dwelling older adults were followed every year, died, and underwent brain autopsy. Cognitive decline was captured via annual cognitive testing. Common neurodegenerative and cerebrovascular conditions were assessed during neuropathologic evaluations. Bulk brain RNASeq and targeted proteomics analyses were conducted using frozen tissues from dorsolateral prefrontal cortex of 1,020 individuals. Cell-type specific gene expressions were quantified in a subsample (N = 424) following single nuclei RNASeq analysis from the same cortex. RESULTS: The bulk brain VGF gene expression was primarily associated with AD and Lewy bodies. The VGF gene association with cognitive decline was in part accounted for by neuropathologies. Similar associations were observed for the VGF protein. Cell-type specific analyses revealed that, while VGF was differentially expressed in most major cell types in the cortex, its association with neuropathologies and cognitive decline was restricted to the neuronal cells. Further, the peptide fragments across the VGF polypeptide resembled each other in relation to neuropathologies and cognitive decline. INTERPRETATION: Multiple pathways link VGF to cognitive health in older age, including neurodegeneration. The VGF gene functions primarily in neuronal cells and its protein associations with pathologic and cognitive outcomes do not map to a specific peptide. ANN NEUROL 2023;94:232-244.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades del Sistema Nervioso , Humanos , Anciano , Encéfalo/patología , Disfunción Cognitiva/patología , Neuropatología , Enfermedades del Sistema Nervioso/patología , Cognición , Enfermedad de Alzheimer/patología , Factores de Crecimiento Nervioso/metabolismo
20.
Chemistry ; : e202401501, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806409

RESUMEN

Visible-light-mediated [2+2] photocycloaddition reaction can be considered an ideal solution due to its green and sustainable properties, and is one of the most efficient methods to synthesize four-membered ring motifs. Although research on the [2+2] photocycloaddition of alkynes is challenging because of the diminished reactivity of alkynes, and the more significant ring strain of the products, remarkable achievements have been made in this field. In this article, we highlight the recent advances in visible-light-mediated [2+2] photocycloaddition reactions of alkynes, with focus on the reaction mechanism and the late-stage synthetic applications. Advances in obtaining cyclobutenes, azetines, and oxetene active intermediates continue to be breakthroughs in this fascinating field of research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA