RESUMEN
Hydroxylamine (NH2OH) is a critical precursor of nitrous oxide (N2O) and key intermediate in the nitrogen cycle. However, the conversion of NH2OH is very fast, and the lack of real-time 15N analytical methods for NH2OH hinders the on-time capture of its biochemical signals in the N cycle. To bridge this gap, we developed a novel approach for real-time determination of 15N-enriched NH2OH. In this approach, an automated sample inlet unit was coupled to a membrane-inlet mass spectrometer, and NH2OH was converted to N2O by sodium hypochlorite for analysis. The interference of carbon dioxide was successfully removed by an ascarite trap, and the N2O signal showed good linearity over the targeted NH2OH concentrations. The limit of detection and limit of quantification of this approach were 0.38 and 1.28 µM, respectively, and 15N enrichment can be accurately detected when the 15N enrichment is higher than 5 atom %. This approach provides a first online analytical tool to capture real-time NH2OH transforming signals using the 15N tracing technique, which will advance mechanism studies of the N cycle.
RESUMEN
Denitrification plays a critical role in soil nitrogen (N) cycling, affecting N availability in agroecosystems. However, the challenges in direct measurement of denitrification products (NO, N2 O, and N2 ) hinder our understanding of denitrification N losses patterns across the spatial scale. To address this gap, we constructed a data-model fusion method to map the county-scale denitrification N losses from China's rice fields over the past decade. The estimated denitrification N losses as a percentage of N application from 2009 to 2018 were 11.8 ± 4.0% for single rice, 12.4 ± 3.7% for early rice, and 11.6 ± 3.1% for late rice. The model results showed that the spatial heterogeneity of denitrification N losses is primarily driven by edaphic and climatic factors rather than by management practices. In particular, diffusion and production rates emerged as key contributors to the variation of denitrification N losses. These findings humanize a 38.9 ± 4.8 kg N ha-1 N loss by denitrification and challenge the common hypothesis that substrate availability drives the pattern of N losses by denitrification in rice fields.
Asunto(s)
Oryza , Desnitrificación , Proyectos de Investigación , Nitrógeno , ChinaRESUMEN
Biofouling and bacterial infections are significant challenges in biomedical devices. In this study, a biocompatible dual-functional coating with antimicrobial and antifouling properties is developed by co-depositing the zwitterionic copolymer and silver nanoparticles via a dopamine-assisted strategy. Inspired by mussel adhesion, the coating exhibits substrate-independent adhesion as a result of the formation of irreversible covalent bonds. The zwitterionic copolymer in the dual coating plays a crucial role in improving surface wettability and reducing protein adsorption and platelet and bacterial adhesion, thereby improving its antifouling property significantly. The silver nanoparticles reduced by self-polymerized polydopamine without the addition of any chemical reductants can effectively improve the antimicrobial activity. Furthermore, as the zwitterion content in the zwitterion polymer increases, the antibacterial and antifouling properties of the coating can be further advanced. The simple and effective approach presented here provides a promising pathway for constructing potent antibacterial and antifouling surfaces, demonstrating great potential for clinical applications in implanted materials.
RESUMEN
BACKGROUND: Epidermal wax covers the surfaces of terrestrial plants to resist biotic and abiotic stresses. Wax-less flowering Chinese cabbage (Brassica campestris L. ssp. chinesis var. utilis tsen et lee) has the charateristics of lustrous green leaves and flower stalks, which are of high commercial value. RESULTS: To clarify the mechanism of the wax deficiency, the wax-less flowering Chinese cabbage doubled-haploid (DH) line 'CX001' and Chinese cabbage DH line 'FT', obtained from isolated microspore culture, were used in the experiments. Genetic analysis showed that the wax-less phenotype of 'CX001' was controlled by a recessive nuclear gene, named wlm1 (wax-less mutation 1), which was fine-mapped on chromosome A09 by bulked segregant analysis sequencing (BSA-seq) of B.rapa genome V3.0. There was only one gene (BraA09g066480.3C) present in the mapping region. The homologous gene in Arabidopsis thaliana is AT1G02205 (CER1) that encodes an aldehyde decarboxylase in the epidermal wax metabolism pathway. Semi-quantitative reverse transcription PCR and transcriptome analysis indicated that BraA09g066480.3C was expressed in 'FT' but not in 'CX001'. BraA09g066480.3C was lost in the CXA genome to which 'CX001' belonged. CONCLUSION: The work presented herein demonstrated that BraA09g066480.3C was the causal gene for wax-less flowering Chinese cabbage 'CX001'. This study will lay a foundation for further research on the molecular mechanism of epidermal wax synthesis in flowering Chinese cabbage.
Asunto(s)
Arabidopsis , Brassica , Alelos , Aldehídos , Brassica/genética , FenotipoRESUMEN
RATIONALE: Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (Ni ) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ15 N in NO3 - and NH4 + and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking. METHODS: Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ15 N in NO3 - and NH4 + . The approaches tested were (a) microdiffusion (MD), (b) chemical conversion (CM), which transforms Ni to either N2 O (CM-N2 O) or N2 (CM-N2 ), and (c) the denitrifier (DN) methods. RESULTS: The study showed that standards in their single forms were reasonably replicated by the different methods and laboratories, with laboratories applying CM-N2 O performing superior for both NO3 - and NH4 + , followed by DN. Laboratories using MD significantly underestimated the "true" values due to incomplete recovery and also those using CM-N2 showed issues with isotope fractionation. Most methods and laboratories underestimated the at%15 N of Ni of labeled standards in their single forms, but relative errors were within maximal 6% deviation from the real value and therefore acceptable. The results showed further that MD is strongly biased by nonspecificity. The results of the environmental samples were generally highly variable, with standard deviations (SD) of up to ± 8.4 for NO3 - and ± 32.9 for NH4 + ; SDs within laboratories were found to be considerably lower (on average 3.1). The variability could not be connected to any single factor but next to errors due to blank contamination, isotope normalization, and fractionation, and also matrix effects and analytical errors have to be considered. CONCLUSIONS: The inconsistency among all methods and laboratories raises concern about reported δ15 N values particularly from environmental samples.
Asunto(s)
Ecosistema , Nitrógeno , Laboratorios , Isótopos de Nitrógeno/análisisRESUMEN
RATIONALE: Information on the isotopic composition of nitrous oxide (N2 O) at natural abundance supports the identification of its source and sink processes. In recent years, a number of mass spectrometric and laser spectroscopic techniques have been developed and are increasingly used by the research community. Advances in this active research area, however, critically depend on the availability of suitable N2 O isotope Reference Materials (RMs). METHODS: Within the project Metrology for Stable Isotope Reference Standards (SIRS), seven pure N2 O isotope RMs have been developed and their 15 N/14 N, 18 O/16 O, 17 O/16 O ratios and 15 N site preference (SP) have been analysed by specialised laboratories against isotope reference materials. A particular focus was on the 15 N site-specific isotopic composition, as this measurand is both highly diagnostic for source appointment and challenging to analyse and link to existing scales. RESULTS: The established N2 O isotope RMs offer a wide spread in delta (δ) values: δ15 N: 0 to +104, δ18 O: +39 to +155, and δ15 NSP : -4 to +20. Conversion and uncertainty propagation of δ15 N and δ18 O to the Air-N2 and VSMOW scales, respectively, provides robust estimates for δ15 N(N2 O) and δ18 O(N2 O), with overall uncertainties of about 0.05 and 0.15, respectively. For δ15 NSP , an offset of >1.5 compared with earlier calibration approaches was detected, which should be revisited in the future. CONCLUSIONS: A set of seven N2 O isotope RMs anchored to the international isotope-ratio scales was developed that will promote the implementation of the recommended two-point calibration approach. Particularly, the availability of δ17 O data for N2 O RMs is expected to improve data quality/correction algorithms with respect to δ15 NSP and δ15 N analysis by mass spectrometry. We anticipate that the N2 O isotope RMs will enhance compatibility between laboratories and accelerate research progress in this emerging field.
Asunto(s)
Óxido Nitroso , Calibración , Espectrometría de Masas/métodos , Óxido Nitroso/análisis , Isótopos de Oxígeno/análisis , Estándares de ReferenciaRESUMEN
With the massive application of IoT and sensor technologies, the study of lightweight ciphers has become an important research topic. In this paper, an effective lightweight LZUC (lightweight Zu Chongzhi) cipher based on chaotic system is proposed to improve the traditional ZUC algorithm. In this method, a further algorithm is designed for the process of integrating chaos into the lightweighting of ZUC. For the first time, this design introduces the logistic chaotic system into both the LFSR (linear feedback shift register) and nonlinear F-function of the cryptographic algorithm. The improved LZUC algorithm not only achieves a certain effect in lightweighting, but also has good statistical properties and security of the output sequence. To verify the performance of the LZUC cipher, we performed NIST statistical tests and information entropy analysis on its output key streams and discussed the typical attacks on the algorithm's resistance to weak key analysis, guess-determination analysis, time-stored data trade-off analysis, and algebraic analysis. In addition, we completed the design of an image security system using the LZUC cipher. Histogram analysis and correlation analysis are used to analyze both plaintext and ciphertext data. At the end of the article, the plaintext and ciphertext images displayed by LCD can be further visualized to verify the encryption effectiveness of the LZUC cipher.
RESUMEN
Using solely highly hydrophilic particles to stabilize emulsions, especially high internal phase emulsions, has always been an important challenge. Here pH-responsive Pickering emulsions stabilized by a low concentration of bare highly hydrophilic Ludox CL nanoparticles without surface modification or addition of surfactants are developed at neutral pH. The dispersed nanoparticles can be transformed into an aggregate state with a network-like structure near the isoelectric point, which contributes to the stabilization of the emulsions. Moreover, the vdW attraction between particles and droplets also plays a key role in the formation of emulsions, which can make the aggregated nanoparticles adsorb tightly around the droplets rather than penetrate the oil-water interface. The formed protective armor and network-like aggregates separate droplets from each other to prevent coalescence. At a low nanoparticle concentration (0.5 wt%), a high internal phase emulsion can be formed and can last up to half a year. This system can emulsify not only the hydrocarbon oil but also the fluoroalkane oil phase. Finally, organic-inorganic composite particles are fabricated using the template action of the Pickering emulsions. The method of preparing composite particles is more convenient than the traditional Pickering emulsion polymerization which often requires the modification of the surface of the hydrophilic particles or the addition of auxiliary monomers. This study provides a simple green strategy for the preparation of a more stable Pickering emulsion stabilized by surface-inactive nanoparticles and will broaden the scope of applications.
RESUMEN
Continuous morphological control of anisotropic particles is always an important challenge in the field of materials. In this study, a new strategy for continuous fabrication of polymer particles with various morphologies induced by electricity is reported using complex emulsions as template. A synthetic electro-responsive surfactant containing ferrocene group is used to prepare complex emulsions, which contain a polymerizable monomer as inner phase. With the increasing time of electrical stimulation on the complex emulsions, hollow, hemispherical, mushroom-like, and spherical particles are constructed successively after photopolymerization. The Marangoni effect caused by the heterogeneity in the interfacial tension at the droplet surface is the reason for the reconfigurable morphology of the complex emulsion. The controllable complex emulsions by electricity present a versatile platform for constructing fine control of the microstructure and shape anisotropy of particles having customized shapes and functionalities, opening a new possibility for designing sophisticated architectures.
Asunto(s)
Polímeros , Tensoactivos , Anisotropía , Emulsiones , Tensión SuperficialRESUMEN
RATIONALE: Acidic subtropical forest soils that receive high atmospheric nitrogen (N) deposition have been identified as important sources of nitric oxide (NO). The relative importance of major processes producing NO is unclear. METHODS: To partition NO sources, we conducted an in situ tracing experiment with 15 NH4 NO3 and NH4 15 NO3 in well-drained acid soils of an N-saturated subtropical forest in Chongqing, southwest China. RESULTS: In the 15 NH4 NO3 treatment, the 15 N signature of NO emitted from the foot of the hillslope (Lower site) was similar to that of the NH4 + pool, indicating predominant autotrophic nitrification for NO formation. In the NH4 15 NO3 treatment, the 15 N enrichment of NO was smaller than that of the NO3 - pool, suggesting minor contribution of denitrification to NO production (~15%). CONCLUSIONS: Nitrification is the main process responsible for NO emissions, even in monsoonal summers when soil water-filled pore space values are relatively high.
Asunto(s)
Óxido Nítrico/análisis , Nitrificación , Suelo/química , Procesos Autotróficos , China , Bosques , Marcaje Isotópico , Espectrometría de Masas , Nitrógeno/análisis , Isótopos de Nitrógeno/análisisRESUMEN
RATIONALE: Unravelling the biogeochemical cycle of the potent greenhouse gas nitrous oxide (N2 O) is an underdetermined problem in environmental sciences due to the multiple source and sink processes involved, which complicate mitigation of its emissions. Measuring the doubly isotopically substituted molecules (isotopocules) of N2 O can add new opportunities to fingerprint and constrain its cycle. METHODS: We present a laser spectroscopic technique to selectively and simultaneously measure the eight most abundant isotopocules of N2 O, including three doubly substituted species - so called "clumped isotopes". For the absolute quantification of individual isotopocule abundances, we propose a new calibration scheme that combines thermal equilibration of a working standard gas with a direct mole fraction-based approach. RESULTS: The method is validated for a large range of isotopic composition values by comparison with other established methods (laser spectroscopy using conventional isotopic scale and isotope ratio mass spectrometry). Direct intercomparison with recently developed ultrahigh-resolution mass spectrometry shows clearly the advantages of the new laser technique, especially with respect to site specificity of isotopic substitution in the N2 O molecule. CONCLUSIONS: Our study represents a new methodological basis for the measurements of both singly substituted and clumped N2 O isotopes. It has a high potential to stimulate future research in the N2 O community by establishing a new class of reservoir-insensitive tracers and molecular-scale insights.
RESUMEN
The isotopic composition of nitrous oxide (N2 O) provides useful information for evaluating N2 O sources and budgets. Due to the co-occurrence of multiple N2 O transformation pathways, it is, however, challenging to use isotopic information to quantify the contribution of distinct processes across variable spatiotemporal scales. Here, we present an overview of recent progress in N2 O isotopic studies and provide suggestions for future research, mainly focusing on: analytical techniques; production and consumption processes; and interpretation and modelling approaches. Comparing isotope-ratio mass spectrometry (IRMS) with laser absorption spectroscopy (LAS), we conclude that IRMS is a precise technique for laboratory analysis of N2 O isotopes, while LAS is more suitable for in situ/inline studies and offers advantages for site-specific analyses. When reviewing the link between the N2 O isotopic composition and underlying mechanisms/processes, we find that, at the molecular scale, the specific enzymes and mechanisms involved determine isotopic fractionation effects. In contrast, at plot-to-global scales, mixing of N2 O derived from different processes and their isotopic variability must be considered. We also find that dual isotope plots are effective for semi-quantitative attribution of co-occurring N2 O production and reduction processes. More recently, process-based N2 O isotopic models have been developed for natural abundance and 15 N-tracing studies, and have been shown to be effective, particularly for data with adequate temporal resolution. Despite the significant progress made over the last decade, there is still great need and potential for future work, including development of analytical techniques, reference materials and inter-laboratory comparisons, further exploration of N2 O formation and destruction mechanisms, more observations across scales, and design and validation of interpretation and modelling approaches. Synthesizing all these efforts, we are confident that the N2 O isotope community will continue to advance our understanding of N2 O transformation processes in all spheres of the Earth, and in turn to gain improved constraints on regional and global budgets.
RESUMEN
BACKGROUND: Necrotic enteritis, which is caused by Clostridium perfringens, has resulted in more than $2 billion losses in the poultry industry every year. Due to the ban of antibiotics in feed industry, alternatives like environment improvement and probiotics have been found to be effective as well. In our study, we aim to explore the protective effect of Lactobacillus plantarum supplementation on CP infected chickens in two environments. RESULTS: The results showed that the Clostridium perfringens administration led to visible and histomorphological gut lesions. In the specific pathogen free or free-range system environment, dietary supplementation with LP obvious increased the ratio of intestinal villus height to crypt depth and the expression of MUC2 mRNA in ileum mucosa, then reduced the mRNA expression level of TNF-α gene in the ileum mucosa. LP treatment significantly reduced the contents of total protein, total superoxide dismutase and glutamic oxaloacetic transaminase in serum of the chickens. CONCLUSIONS: The specific pathogen free environment contributed to the recovery of pre-inflammation of the chickens, and free-range system environment contributed to the repair of damage in the later stages of chicken inflammation. Supplementation of LP in FRS environment was more conducive to the recovery of CP infected in chickens.
Asunto(s)
Infecciones por Clostridium/veterinaria , Clostridium perfringens , Lactobacillus plantarum , Probióticos/administración & dosificación , Animales , Pollos , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/patología , Infecciones por Clostridium/prevención & control , Dieta/veterinaria , Inflamación , Mucosa Intestinal/patología , Mucina 2/genética , Mucina 2/metabolismo , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , ARN Mensajero , Organismos Libres de Patógenos Específicos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Increasing nitrogen (N) deposition in subtropical forests in south China causes N saturation, associated with significant nitrate (NO3- ) leaching. Strong N attenuation may occur in groundwater discharge zones hydrologically connected to well-drained hillslopes, as has been shown for the subtropical headwater catchment "TieShanPing", where dual NO3- isotopes indicated that groundwater discharge zones act as an important N sink and hotspot for denitrification. Here, we present a regional study reporting inorganic N fluxes over two years together with dual NO3- isotope signatures obtained in two summer campaigns from seven forested catchments in China, representing a gradient in climate and atmospheric N input. In all catchments, fluxes of dissolved inorganic N indicated efficient conversion of NH4+ to NO3- on well-drained hillslopes, and subsequent interflow of NO3- over the argic B-horizons to groundwater discharge zones. Depletion of 15 N- and 18 O-NO3- on hillslopes suggested nitrification as the main source of NO3- . In all catchments, except one of the northern sites, which had low N deposition rates, NO3- attenuation by denitrification occurred in groundwater discharge zones, as indicated by simultaneous 15 N and 18 O enrichment in residual NO3- . By contrast to the southern sites, the northern catchments lack continuous and well-developed groundwater discharge zones, explaining less efficient N removal. Using a model based on 15 NO3- signatures, we estimated denitrification fluxes from 2.4 to 21.7 kg N ha-1 year-1 for the southern sites, accounting for more than half of the observed N removal. Across the southern catchments, estimated denitrification scaled proportionally with N deposition. Together, this indicates that N removal by denitrification is an important component of the N budget of southern Chinese forests and that natural NO3- attenuation may increase with increasing N input, thus partly counteracting further aggravation of N contamination of surface waters in the region.
Asunto(s)
Clima , Bosques , Nitratos/análisis , Ciclo del Nitrógeno , Nitrógeno/aislamiento & purificación , China , Desnitrificación , Monitoreo del Ambiente , Agua Subterránea/química , Hidrología , Nitrógeno/análisisRESUMEN
Photoresponsive complex emulsions are prepared in a three-phase system consisting of two oils: hexane (H) and perfluorooctane (F). An aqueous solution of a mixed surfactant of fluorosurfactant, F(CF2) x(CH2CH2O) yH (Zonyl FS-300), and a synthesized light-responsive surfactant, 2-(4-(4-butylphenyl)diazenylphenoxy)ethyltrimethylammonium bromide (C4AZOC2TAB) was employed as the continuous phase. Complex emulsions with various geometries were prepared by one-step vortex mixing and a temperature-induced phase-separation method. It was noticed that the topology of the complex emulsion was highly dependent on the mass ratio of Zonyl FS-300/C4AZOC2TAB. Light microscopy images showed that phase inversion from an H/F/W- to an F/H/W-type double emulsion via a Janus emulsion was achieved by gradually increasing the mass ratio of C4AZOC2TAB/Zonyl FS-300. Upon UV/blue light irradiation, the topology of complex emulsions was turned to switch from an F/H/W double emulsion to a Janus emulsion to an entirely inverted H/F/W double emulsion. Dynamic interfacial tension measurements showed that UV irradiation of the interface between an aqueous trans-C4AZOC2TAB solution and hexane brings about an increase in the interfacial tension, suggesting the nature of photoinduced morphological changes in complex emulsions. The reconfiguration process of complex emulsions was illustrated by the Marangoni effect based on heterogeneity in the interfacial tension at the complex emulsion surface induced by controlling the molecular conversion of C4AZOC2TAB using light irradiation. Finally, we used the complex emulsions structure to form an on-off switch to start and shut off the evaporation of one volatile phase to achieve process monitoring. This could be used to initiate and quench a reaction, which offers a novel idea for achieving switchable and reversible reaction control in multiple-phase reactions.
RESUMEN
RATIONALE: Despite a long history and growing interest in isotopic analyses of N2 O, there is a lack of isotopically characterized N2 O isotopic reference materials (standards) to enable normalization and reporting of isotope-delta values. Here we report the isotopic characterization of two pure N2 O gas reference materials, USGS51 and USGS52, which are now available for laboratory calibration (https://isotopes.usgs.gov/lab/referencematerials.html). METHODS: A total of 400 sealed borosilicate glass tubes of each N2 O reference gas were prepared from a single gas filling of a high vacuum line. We demonstrated isotopic homogeneity via dual-inlet isotope-ratio mass spectrometry. Isotopic analyses of these reference materials were obtained from eight laboratories to evaluate interlaboratory variation and provide preliminary isotopic characterization of their δ15 N, δ18 O, δ15 Nα , δ15 Nß and site preference (SP ) values. RESULTS: The isotopic homogeneity of both USGS51 and USGS52 was demonstrated by one-sigma standard deviations associated with the determinations of their δ15 N, δ18 O, δ15 Nα , δ15 Nß and SP values of 0.12 mUr or better. The one-sigma standard deviations of SP measurements of USGS51 and USGS52 reported by eight laboratories participating in the interlaboratory comparison were 1.27 and 1.78 mUr, respectively. CONCLUSIONS: The agreement of isotope-delta values obtained in the interlaboratory comparison was not sufficient to provide reliable accurate isotope measurement values for USGS51 and USGS52. We propose that provisional values for the isotopic composition of USGS51 and USGS52 determined at the Tokyo Institute of Technology can be adopted for normalizing and reporting sample data until further refinements are achieved through additional calibration efforts.
RESUMEN
In forests of the humid subtropics of China, chronically elevated nitrogen (N) deposition, predominantly as ammonium (NH4+ ), causes significant nitrate (NO3- ) leaching from well-drained acid forest soils on hill slopes (HS), whereas significant retention of NO3- occurs in near-stream environments (groundwater discharge zones, GDZ). To aid our understanding of N transformations on the catchment level, we studied spatial and temporal variabilities of concentration and natural abundance (δ15 N and δ18 O) of nitrate (NO3- ) in soil pore water along a hydrological continuum in the N-saturated Tieshanping (TSP) catchment, southwest China. Our data show that effective removal of atmogenic NH4+ and production of NO3- in soils on HS were associated with a significant decrease in δ15 N-NO3- , suggesting efficient nitrification despite low soil pH. The concentration of NO3- declined sharply along the hydrological flow path in the GDZ. This decline was associated with a significant increase in both δ15 N and δ18 O of residual NO3- , providing evidence that the GDZ acts as an N sink due to denitrification. The observed apparent 15 N enrichment factor (ε) of NO3- of about -5 in the GDZ is similar to values previously reported for efficient denitrification in riparian and groundwater systems. Episode studies in the summers of 2009, 2010 and 2013 revealed that the spatial pattern of δ15 N and δ18 O-NO3- in soil water was remarkably similar from year to year. The importance of denitrification as a major N sink was also seen at the catchment scale, as largest δ15 N-NO3- values in stream water were observed at lowest discharge, confirming the importance of the relatively small GDZ for N removal under base flow conditions. This study, explicitly recognizing hydrologically connected landscape elements, reveals an overlooked but robust N sink in N-saturated, subtropical forests with important implications for regional N budgets.
Asunto(s)
Monitoreo del Ambiente , Bosques , Isótopos de Nitrógeno , China , Nitratos , SueloRESUMEN
Forest soils are an important source of nitrous oxide (N2O), however, field observations of N2O emission have often exhibited large variabilities when compared with managed agricultural lands. In the last decade, the number of forest N2O studies has increased more than tenfold, but only a few of them have looked into the interannual flux variabilities from the regional scale. Here, we have collected 30 long-term N2O monitoring studies (≥ 2 years) based on a global database, and extracted variabilities (VARFlux) as well as relative variabilities (VAR%, in proportions) of annual N2O fluxes. The relationship of mean annual precipitation (MAP), mean annual temperature (MAT), and nitrogen (N) deposition with flux variabilities was examined to explore the underlying mechanisms for N2O emission on a long-term scale. Our results show that mean VARFlux is 0.43 kg N ha-1 yr-1 and VAR% is 28.68%. Across climatic zones, the subtropical forests have the largest annual N2O fluxes, as well as the largest fluctuations among annual budgets, while the tropics were the smallest. We found that the regulating factors for VARFlux and VAR% are fundamentally different, i.e., MAT and N input determine the annual fluxes as well as VARFlux while MAP and other limiting soil parameters determine VAR%. The relative contributions of different seasons to flux variabilities were also explored, indicating that N2O fluxes of warm and cool seasons are more responsible for the fluctuations in annual fluxes of the (sub)tropical and temperate forests, respectively. Overall, despite the limitation in interpretations due to few long-term studies from literature, this work highlights that significant interannual variabilities are common phenomena for N2O emission from different climatic zones forest soils; by unraveling the divergent drivers for VARFlux and VAR%, we have provided the possibility of improving N2O simulation models for constraining the heterogeneity of N2O emission processes from climatic zones forest soils.
RESUMEN
This study was conducted to investigate the effects of dietary curcumin supplementation on growth performance, anticoccidial index, antioxidant capacity, intestinal inflammation, and cecum microbiota in broilers infected with Eimeria tenella. A total of 234 one-day-old broilers were categorized into three treatments, with six replicates per treatment containing 13 broilers each. The three treatments included the control group, Eimeria tenella group, and Eimeria tenella + curcumin (200 mg/kg) group. The feeding trial lasted for 42 days, during which the broilers were orally administered with 0.9% saline or 5 × 104Eimeria tenella oocysts on day 14 of the study. On day 17 and day 21, one bird per replicate was selected for slaughtering. Results indicated an increased survival rate and anticoccidial index and improved productive performance in coccidia-infected broilers with curcumin supplementation. Furthermore, curcumin enhanced the serum antioxidant capacity in Eimeria tenella-infected broilers, evidenced by increased serum catalase activity (3d, 7d), as well as decreased malondialdehyde level (3d, 7d) and nitric oxide synthase activity (7d) (p < 0.05). Curcumin also improved intestinal inflammation and barrier function, evidenced by the downregulation of interleukin (IL)-1ß (3d, 7d), TNF-alpha (TNF-α) (3d, 7d), and IL-2 (7d) and the up-regulated mRNA levels of claudin-1 (7d), zonula occludens (ZO-1; 3d, 7d), and occludin (3d, 7d) in the ceca of infected broilers (p < 0.05). Eimeria tenella infection significantly disrupted cecum microbial balance, but curcumin did not alleviate cecum microbial disorder in broilers infected with Eimeria tenella. Collectively, curcumin supplementation enhanced growth performance and anticoccidial index in Eimeria tenella-infected broilers via improving antioxidant ability and cecum inflammation without affecting cecum microbiota.
RESUMEN
Size-based particle filtration has become indispensable in numerous biomedical and environmental applications. In this study, bioinspired by the filter-feeding mechanism (lobe filtration) of manta rays, we designed a U-shaped biomimetic gill rake filter that combined lobe filtration and Dean flow to filter monodisperse suspensions, bi-disperse suspensions and yeast cells. Compared with other equipment using the inertial focusing technology, our equipment can perform high-throughput (up to 8 mL min-1) and high-efficiency filtration of particles (maximum filtration efficiencies of 96.08% and 97.14% for 10 and 15 µm monodisperse suspensions at the optimum flow rate of 6 mL min-1). The complex velocity field of the micro-fluidic flow within the filter is numerically simulated, and in combination with experiments, a threshold for the flow rate is identified. When the inlet flow rate exceeds the threshold value, the efficiency of particle filtration is increased rapidly. Afterwards, by analysing the filtration mechanism, we develop three novel filtration processes. The equilibrium positions of the particles and yeast cells in the main channel are close to the outer wall at high flow rate, which diminishes the likelihood of particles and yeast cells entering the side channel. This configuration establishes a self-cleaning mechanism, ensuring prolonged and efficient operation of the filter with high-throughput processing. Furthermore, the influence of the filter lobe angle and channel width on the filtration efficiency and outlet flow rate ratio are explored, and an optimisation plan is prepared.