Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 32(10): 3522-3538, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39086131

RESUMEN

Chimeric antigen receptor (CAR) T cells have shown significant efficacy in hematological diseases. However, CAR T therapy has demonstrated limited efficacy in solid tumors, including glioblastoma (GBM). One of the most important reasons is the immunosuppressive tumor microenvironment (TME), which promotes tumor growth and suppresses immune cells used to eliminate tumor cells. The human transforming growth factor ß (TGF-ß) plays a crucial role in forming the suppressive GBM TME and driving the suppression of the anti-GBM response. To mitigate TGF-ß-mediated suppressive activity, we combined a dominant-negative TGF-ß receptor II (dnTGFßRII) with our previous bicistronic CART-EGFR-IL13Rα2 construct, currently being evaluated in a clinical trial, to generate CART-EGFR-IL13Rα2-dnTGFßRII, a tri-modular construct we are developing for clinical application. We hypothesized that this approach would more effectively subvert resistance mechanisms observed with GBM. Our data suggest that CART-EGFR-IL13Rα2-dnTGFßRII significantly augments T cell proliferation, enhances functional responses, and improves the fitness of bystander cells, particularly by decreasing the TGF-ß concentration in a TGF-ß-rich TME. In addition, in vivo studies validate the safety and efficacy of the dnTGFßRII cooperating with CARs in targeting and eradicating GBM in an NSG mouse model.


Asunto(s)
Glioblastoma , Inmunoterapia Adoptiva , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Glioblastoma/terapia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/inmunología , Inmunoterapia Adoptiva/métodos , Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Subunidad alfa2 del Receptor de Interleucina-13/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell Mol Neurobiol ; 42(8): 2745-2755, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34338959

RESUMEN

Hippocampal sclerosis (HS) is the most common surgical pathology associated with temporal lobe epilepsy (TLE). However, the cause of TLE with or without HS remains unknown. Our current study aimed to illustrate the essential molecular mechanism that is potentially involved in the pathogenesis of TLE-HS and to shed light on the transcriptional changes associated with hippocampal sclerosis. Compared to no-HS group, 341 mRNA transcripts and 131 circRNA transcripts were differentially expressed in ILAE type 1 group. The raw sequencing data have been deposited into sequence-read archive (SRA) database under accession number PRJNA699348.Gene Ontology analysis demonstrated that the dysregulated genes were associated with the biological processes of vesicle-mediated transport. Enrichment analysis demonstrated that dysregulated genes were involved mainly in the MAPK signal pathway. Subsequently, A total of 441 known or predicted interactions were formed among DEGs, and the most important module was detected in the PPI network using the MCODE plug-in. There were mainly four functional modules enriched: ER to Golgi transport vesicle membrane, Basal transcription factors, GABA-gated chloride ion channel activity, CENP-A containing nucleosome assembly. A circRNA-mRNA co-expression network was constructed including 5 circRNAs(hsa_circ_0025349, hsa_circ_0002405, hsa_circ_0004805, hsa_circ_0032254, and hsa_circ_0032875) and three mRNAs (FYN, SELENBP1, and GRIPAP1) based on the normalized mRNA signal intensities. This is the first to report the circRNAs and mRNAs expression profile of surgically resected hippocampal tissues from TLE patients of ILAE-1 and no-HS, and these results may provide new insight into the transcriptional changes associated with this pathology.


Asunto(s)
Epilepsia del Lóbulo Temporal , MicroARNs , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Gliosis/patología , Hipocampo/metabolismo , Humanos , MicroARNs/genética , Nucleosomas , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esclerosis/genética , Esclerosis/patología , Factores de Transcripción/genética , Ácido gamma-Aminobutírico
3.
Neurochem Res ; 46(9): 2451-2462, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34173118

RESUMEN

Epilepsy represents a hazardous neurological disorder, underpinned by a pathophysiological process that is yet to be fully understood. Here, we aimed to elucidate the effect of methyl-CpG-binding domain protein 3 (MBD3) on hippocampal neuronal damage in epileptic mice by targeting the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. The expression of MBD3 was determined by Western blot in a hippocampal neuronal culture (HNC) epileptic model established using the low Mg2+ECF culture method. The interaction between MBD3 and DNA methyltransferase 1 (DNMT1) was determined via co-immunoprecipitation and mass spectrometry analysis. Bisulfite modification and sequencing was performed to evaluate the degree of methylation of triggering receptor expressed on myeloid cells 2 (TREM2). The viability and apoptosis of hippocampal neurons were detected by CCK-8 and TUNEL assays, respectively. Finally, the effect of MBD3 was verified in vivo. MBD3 was highly expressed in the HNC model of epilepsy, with its interaction with DNMT1 found to promote the hypermethylation of TREM2 at site cg25748868. Additionally, decreased TREM2 and inhibited PI3K/Akt pathway was observed in the HNC epileptic model. Simultaneous inhibition of MBD3 and DNMT1 decreased the methylation level at cg25748868, up-regulated TREM2 expression, and activated the PI3K/Akt pathway, thereby arresting neuronal damage. Inhibition of MBD3 reduced the level of epileptic seizures, down-regulated cg25748868 methylation, activated TREM2-mediated signaling pathways, and alleviated hippocampal neuronal damage in the acute seizure mouse models. The present study unveiled that MBD3 and DNMT1 synergistically enhanced hypermethylation of cg25748868 in TREM2, and promoted the onset of epilepsy via inhibition of the PI3K/Akt pathway.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Proteínas de Unión al ADN/metabolismo , Epilepsia/fisiopatología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Convulsiones/fisiopatología , Factores de Transcripción/metabolismo , Animales , Apoptosis/fisiología , Supervivencia Celular/fisiología , Epilepsia/etiología , Epilepsia/patología , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Glicoproteínas de Membrana/química , Metilación , Ratones Endogámicos ICR , Neuronas/metabolismo , Neuronas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Inmunológicos/química , Convulsiones/etiología , Convulsiones/patología , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
4.
Int J Biol Macromol ; 278(Pt 1): 134426, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098687

RESUMEN

BACKGROUND: Rapid proliferation is a hallmark of glioblastoma multiforme (GBM) and a major contributor to its recurrence. Aberrant ubiquitination has been implicated in various diseases, including cancer. In our preliminary studies, we identified Ubiquitin-conjugating enzyme E2S (UBE2S) as a potential glioma biomarker, exhibiting close associations with glioma grade and protein phosphatase 1, regulatory subunit 105 (Ki67) expression levels. However, the underlying molecular mechanisms remained elusive. NF-κB is an important signaling pathway that promotes GBM proliferation. Direct intervention targeting NF-κB has not yielded the expected results, prompting the exploration of new molecules for regulating NF-κB as a new direction. METHODS: This study employed methods including yeast two-hybrid and immunoprecipitation to uncover the interaction between UBE2S and A kinase interacting protein 1 (AKIP1). Laser confocal microscopy was used to observe the localization of UBE2S and AKIP1. Dual luciferase reporter genes were utilized to observe the activation of NF-κB. RESULTS: Our findings demonstrate that UBE2S deficiency significantly impedes GBM progression, both in vitro and in vivo. Mechanistically, UBE2S plays a crucial role in recruiting Ubiquitin Specific Peptidase 15 (USP15), facilitating the removal of K11-linked ubiquitination on AKIP1. This action enhances AKIP1 stability within the GBM context. The resulting increase in AKIP1 levels further augments nuclear factor kappa-B (NF-κB) transcriptional activity, leading to the upregulation of downstream genes regulated by the NF-κB pathway, thereby promoting GBM progression. CONCLUSIONS: In summary, our findings reveal the role of the UBE2S/AKIP1-NF-κB axis in regulating GBM progression and provide novel evidence supporting UBE2S as a potential drug target for GBM.


Asunto(s)
Progresión de la Enfermedad , Glioblastoma , FN-kappa B , Transducción de Señal , Enzimas Ubiquitina-Conjugadoras , Ubiquitinación , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Humanos , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , FN-kappa B/metabolismo , Animales , Línea Celular Tumoral , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Unión Proteica
5.
Front Immunol ; 13: 842524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618381

RESUMEN

Background: Ankyrin repeat and SOCS Box containing 3 (ASB3) is an E3 ubiquitin ligase. It has been reported to regulate the progression of some cancers, but no systematic pan-cancer analysis has been conducted to explore its function in prognosis and immune microenvironment. Method: In this study, mRNA expression data were downloaded from TCGA and GTEx database. Next generation sequencing data from 14 glioblastoma multiforme (GBM) samples by neurosurgical resection were used as validation dataset. Multiple bioinformatics methods (ssGSEA, Kaplan-Meier, Cox regression analysis, GSEA and online tools) were applied to explore ASB3 expression, gene activity, prognosis of patients in various cancers, and its correlation with clinical information, immune microenvironment and pertinent signal pathways in GBM. The biological function of ASB3 in tumor-infiltrating lymphocytes (TILs) was verified using an animal model. Results: We found that ASB3 was aberrant expressed in a variety of tumors, especially in GBM, and significantly correlated with the prognosis of cancer patients. The level of ASB3 was related to the TMB, MSI and immune cell infiltration in some cancer types. ASB3 had a negative association with immune infiltration and TME, including regulatory T cells (Tregs), cancer-associated fibroblasts, immunosuppressors and related signaling pathways in GBM. ASB3 overexpression reduced the proportion of Tregs in TILs. GSEA and PPI analysis also showed negative correlation between ASB3 expression and oncogenetic signaling pathways in GBM. Conclusion: A comprehensive pan-cancer analysis of ASB3 showed its potential function as a biomarker of cancer prognosis and effective prediction of immunotherapy response. This study not only enriches the understanding of the biological function of ASB3 in pan-cancer, especially in GBM immunity, but also provides a new reference for the personalized immunotherapy of GBM.


Asunto(s)
Fibroblastos Asociados al Cáncer , Glioblastoma , Animales , Glioblastoma/genética , Carcinogénesis , Transformación Celular Neoplásica , Biología Computacional , Microambiente Tumoral/genética
6.
Front Neurosci ; 15: 770627, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867172

RESUMEN

Hippocampal sclerosis (HS) is one of the most common pathological type of intractable temporal lobe epilepsy (TLE), often characterized by hippocampal atrophy, neuronal apoptosis, and gliogenesis. However, the molecular mechanisms of neuronal apoptosis in patients with HS are still not fully understood. We therefore conducted a pilot study focusing on the neuronal apoptosis ceRNA network in the sclerotic hippocampus of intractable TLE patients. In this research, RNA sequencing (RNA-seq) was utilized to quantify the expression levels of lncRNAs, miRNAs, and mRNAs in TLE patients with HS (HS-TLE) and without HS (non-HS-TLE), and reverse transcription-quantitative PCR (qRT-PCR). The interactions of differential expression (DE) lncRNAs-miRNAs or DEmiRNAs-mRNAs were integrated by StarBase v3.0, and visualized using Cytoscape. Subsequently, we annotate the functions of lncRNA-associated competitive endogenous RNA (ceRNA) network through analysis of their interactions with mRNAs. RNA-seq analyses showed 381 lncRNAs, 42 miRNAs, and 457 mRNAs were dysregulated expression in HS-TLE compared to non-HS-TLE. According to the ceRNA hypothesis, 5 HS-specific ceRNA network were constructed. Among them, the core ceRNA regulatory network involved in neuronal apoptosis was constituted by 10 DElncRNAs (CDKN2B-AS1, MEG3, UBA6-AS1, etc.), 7 DEmiRNAs (hsa-miR-155-5p, hsa-miR-195-5p, hsa-miR-200c-3p, etc.), and 3 DEmRNAs (SCN2A, DYRK2, and MAPK8), which belonging to apoptotic and epileptic terms. Our findings established the first ceRNA network of lncRNA-mediated neuronal apoptosis in HS-TLE based on transcriptome sequencing, which provide a new perspective on the disease pathogenesis and precise treatments of HS.

7.
Bot Stud ; 55(1): 72, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28510952

RESUMEN

BACKGROUND: Gastrodia flabilabella is a mycoheterotrophic orchid that obtains carbohydrates and nutrients from its symbiotic mycorrhizal fungi. The species is an endemic and vulnerable species enlisted in the "A Preliminary Red List of Taiwanese Vascular Plants" according to the IUCN Red List Categories and Criteria Version 3.1. G. flabilabella dwells the underground of broadleaf and coniferous forest with richness litter. Based on herbarium records, this species is distributed in central Taiwan. Twenty eight microsatellite loci were developed in G. flabilabella and were tested for cross-species amplification in additional taxa of G. confusoides, G. elata, and G. javanica. We estimated the genetic variation that is valuable for conservation management and the development of the molecular identification system for G. elata, a traditional Chinese medicine herb. RESULTS: Microsatellite primer sets were developed from G. flabilabella using the modified AFLP and magnetic bead enrichment method. In total, 257 microsatellite loci were obtained from a magnetic bead enrichment SSR library. Of the 28 microsatellite loci, 16 were polymorphic, in which the number of alleles ranged from 2 to 15, with the observed heterozygosity ranging from 0.02 to 1.00. In total, 15, 13, and 7 of the loci were found to be interspecifically amplifiable to G. confusoides, G. elata, and G. javanica, respectively. CONCLUSIONS: Amplifiable and transferable microsatellite loci are potentially useful for future studies in investigating intraspecific genetic variation, reconstructing phylogeographic patterns among closely related species, and establishing the standard operating system of molecular identification in Gastrodia.

8.
Epilepsy Res ; 108(3): 555-64, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24461543

RESUMEN

We evaluated the long-term outcome of epilepsy surgery in drug-resistant epilepsy patients, and investigated preoperative factors associated with postoperative long-term surgical outcome. We performed a retrospective study of 379 patients who received epilepsy surgeries from 2000 to 2010. Patients had completed a minimum of 2-year and up to 12-year follow-up. Preoperative evaluations, surgical outcomes and clinical data of patients were collected and analyzed. We found that the epilepsy surgery was effective in drug-resistant patients and the long-term outcome of epilepsy surgery was satisfactory. The bipolar electro-coagulation could improve the surgical outcome when the epileptogenic focus was on the functional cortex. Results of the 2-year follow-up showed that preoperative seizure characteristics including the history of febrile seizure, seizure frequency, and location, quantity and range of seizure foci were significantly associated with the surgical outcome. The surgery procedure including the surgery type and the extent of resection also affected outcome. Abnormal head or hippocampus MRI, inconsistent results of preoperative investigations, seizure types, and pathology type might also be predictors of long-term surgical outcome.


Asunto(s)
Epilepsia/cirugía , Neurocirugia/métodos , Adolescente , Adulto , Electroencefalografía , Femenino , Hipocampo/patología , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA