Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(5): 101, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027037

RESUMEN

KEY MESSAGE: A novel locus for Fusarium crown rot (FCR) resistance was identified on chromosome 1B at 641.36-645.13 Mb using GWAS and could averagely increase 39.66% of FCR resistance in a biparental population. Fusarium crown rot can cause considerable yield losses. Developing and growing resistance cultivars is one of the most effective approaches for controlling this disease. In this study, 361 Chinese wheat landraces were evaluated for FCR resistance, and 27 with the disease index lower than 30.00 showed potential in wheat breeding programs. Using a genome-wide association study approach, putative quantitative trait loci (QTL) for FCR resistance was identified. A total of 21 putative loci on chromosomes 1A, 1B, 2B, 2D, 3B, 3D, 4B, 5A, 5B, 7A, and 7B were significantly associated with FCR resistance. Among these, a major locus Qfcr.sicau.1B-4 was consistently identified among all the trials on chromosome 1B with the physical regions from 641.36 to 645.13 Mb. A polymorphism kompetitive allele-specific polymerase (KASP) marker was developed and used to validate its effect in an F2:3 population consisting of 136 lines. The results showed the presence of this resistance allele could explain up to 39.66% of phenotypic variance compared to its counterparts. In addition, quantitative real-time polymerase chain reaction showed that two candidate genes of Qfcr.sicau.1B-4 were differently expressed after inoculation. Our study provided useful information for improving FCR resistance in wheat.


Asunto(s)
Fusarium , Estudio de Asociación del Genoma Completo , Mapeo Cromosómico , Triticum/genética , Fitomejoramiento , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Fenotipo
2.
Theor Appl Genet ; 135(2): 527-535, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34716761

RESUMEN

KEY MESSAGE: A tiller inhibition gene, TIN4, was mapped to an approximately 311 kb genomic interval on chromosome arm 2DL of wheat. The tiller is one of the key components of plant morphological architecture and a central agronomic trait affecting spike number in wheat. Low tiller number has been proposed as a major component of crop ideotypes for high yield potential. In this study, we characterized the development of tillering in near-isogenic lines (NIL7A and NIL7B), indicating that the TIN4 gene inhibited the growth of tillering buds and negatively regulated tiller number. Low-tillering was controlled by a single gene (TIN4) located on chromosome 2DL by genetic analysis and bulked segregant RNA-seq analysis. A total of 17 new polymorphic markers were developed in this study, and 61 recombinants were identified in the secondary F2 population containing 4,266 individuals. TIN4 was finally mapped on a 0.35 cM interval, co-segregated with molecular marker M380, within a 311 kb genomic interval of the wheat cultivar Chinese Spring reference genome sequence that contained twelve predicted genes. Yield experiments showed that the yield of low-tillering lines was higher than that of high-tillering lines at a higher density. Overall, this study provides a foundation for the construction of a low-tillering ideotype for improving wheat yield and further cloning TIN4 by map-based cloning approach.


Asunto(s)
Genómica , Triticum , Mapeo Cromosómico , Humanos , Fenotipo
3.
Theor Appl Genet ; 132(8): 2181-2193, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31020386

RESUMEN

KEY MESSAGE: Tiller development in low-tillering wheat is related to several differentially expressed genes, proteins, and metabolites, as determined by an integrated omics approach combining transcriptome analysis, iTRAQ, and HPLC-MS on multiple NILs. Tillering is an important aspect of plant morphology that affects spike number, thereby contributing to the final crop yield. However, the mechanisms inhibiting tiller production in low-tillering wheat are poorly characterized. To investigate this aspect of wheat biology, two pairs of near-isogenic lines were developed, and an integrated omics approach combining transcriptome analysis, isobaric tags for relative and absolute quantification, and high-performance liquid chromatography-mass spectrometry were used to compare the free-tillering and low-tillering caused by an allele at Qltn.sicau-2D in wheat samples. Overall, 474 genes, 166 proteins, and 28 metabolites were identified as tillering-associated differentially expressed genes, proteins, and metabolites (DEGs, DEPs, and DEMs, respectively). Functional analysis indicated that the abundance of DEGs/DEPs/DEMs was related to lignin and cellulose metabolism, cell division, cell cycle processes, and glycerophospholipid metabolism; three transcription factor families, GRAS, GRF, and REV, might be related to the decrease in tillering in low-tillering wheat. These findings contribute to improve our understanding of the mechanisms responsible for the inhibition of tiller development in low-tillering wheat cultivars.


Asunto(s)
Metabolómica , Proteómica , Transcriptoma/genética , Triticum/anatomía & histología , Triticum/metabolismo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Endogamia , Marcaje Isotópico , Metaboloma , Fenotipo , Proteoma/metabolismo , Triticum/genética
4.
Adv Mater ; 36(35): e2407329, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966893

RESUMEN

Touch control intention recognition is an important direction for the future development of human-machine interactions (HMIs). However, the implementation of parallel-sensing functional modules generally requires a combination of different logical blocks and control circuits, which results in regional redundancy, redundant data, and low efficiency. Here, a location-and-pressure intelligent tactile sensor (LPI tactile sensor) unprecedentedly combined with sensing, computing, and logic is proposed, enabling efficient and ultrahigh-resolution action-intention interaction. The LPI tactile sensor eliminates the need for data transfer among the functional units through the core integration design of the layered structure. It actuates in-sensor perception through feature transmission, fusion, and differentiation, thereby revolutionizing the traditional von Neumann architecture. While greatly simplifying the data dimensionality, the LPI tactile sensor achieves outstanding resolution sensing in both location (<400 µm) and pressure (75 Pa). Synchronous feature fusion and decoding support the high-fidelity recognition of action and combinatorial logic intentions. Benefiting from location and pressure synergy, the LPI tactile sensor demonstrates robust privacy as an encrypted password device and interaction intelligence through pressure enhancement. It can recognize continuous touch actions in real time, map real intentions to target events, and promote accurate and efficient intention-driven HMIs.

5.
J Hazard Mater ; 415: 125677, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34088181

RESUMEN

The organic pollutants, typical of emulsified oils and soluble organic dyes, is commonly found in wastewater, however simultaneous removal of them remains challenging because of their difference in surface charge, molecule size, and solubility in water. Inspired by the water purification of the earth's multilayer strata, a fibrous membrane with multifunctional skin is fabricated by coupling sub-micrometer pores layer of polyaniline (PANI) and nano molecular brush of polyacrylic acid (PAA)/polyethyleneimine (PEI) on polyacrylonitrile membrane, for cross-scale organic pollution/water separation. This ultrathin skin of PANI/PAA/PEI is endowed with sub-micrometer pores and strong hydration, which can effectively prevent tiny oil droplets from entering or adhering the membrane pores. Furthermore, this skin with double electric layer can selectively adsorb and even filtrate anionic/cationic dyes by protonation and deprotonation effect in different pH solutions. The synergy of these features enables this membrane with ultra-high water flux (>3000 L m-2 h-1 bar-1), oil rejection rates (>99.6%), and anionic/cationic dyes adsorbability (>49.1 mg/g). Besides, the membrane also exhibits desirable reusability, excellent mechanical durability and outstanding acid/alkali resistance, promising for removal of insoluble emulsified oils and soluble organic dyes in wastewater.

6.
Front Plant Sci ; 12: 665122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484253

RESUMEN

Wheat (Triticum aestivum L.) is one of the most important crops in the world. Here, four yield-related traits, namely, spike length, spikelets number, tillers number, and thousand-kernel weight, were evaluated in 272 Chinese wheat landraces in multiple environments. Five multi-locus genome-wide association studies (FASTmrEMMA, ISIS EN-BLASSO, mrMLM, pKWmEB, and pLARmEB) were performed using 172,711 single-nucleotide polymorphisms (SNPs) to identify yield-related quantitative trait loci (QTL). A total of 27 robust QTL were identified by more than three models. Nine of these QTL were consistent with those in previous studies. The remaining 18 QTL may be novel. We identified a major QTL, QTkw.sicau-4B, with up to 18.78% of phenotypic variation explained. The developed kompetitive allele-specific polymerase chain reaction marker for QTkw.sicau-4B was validated in two recombinant inbred line populations with an average phenotypic difference of 16.07%. After combined homologous function annotation and expression analysis, TraesCS4B01G272300 was the most likely candidate gene for QTkw.sicau-4B. Our findings provide new insights into the genetic basis of yield-related traits and offer valuable QTL to breed wheat cultivars via marker-assisted selection.

7.
Front Genet ; 12: 651785, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122506

RESUMEN

Aegilops tauschii is the diploid progenitor of the D subgenome of hexaploid wheat (Triticum aestivum L.). Here, the phenotypic data of kernel length (KL), kernel width (KW), kernel volume (KV), kernel surface area (KSA), kernel width to length ratio (KWL), and hundred-kernel weight (HKW) for 223 A. tauschii accessions were gathered across three continuous years. Based on population structure analysis, 223 A. tauschii were divided into two subpopulations, namely T-group (mainly included A. tauschii ssp. tauschii accessions) and S-group (mainly included A. tauschii ssp. strangulata). Classifications based on cluster analysis were highly consistent with the population structure results. Meanwhile, the extent of linkage disequilibrium decay distance (r 2 = 0.5) was about 110 kb and 290 kb for T-group and S-group, respectively. Furthermore, a genome-wide association analysis was performed on these kernel traits using 6,723 single nucleotide polymorphism (SNP) markers. Sixty-six significant markers, distributed on all seven chromosomes, were identified using a mixed linear model explaining 4.82-13.36% of the phenotypic variations. Among them, 15, 28, 22, 14, 21, and 13 SNPs were identified for KL, KW, KV, KSA, KWL, and HKW, respectively. Moreover, six candidate genes that may control kernel traits were identified (AET2Gv20774800, AET4Gv20799000, AET5Gv20005900, AET5Gv20084100, AET7Gv20644900, and AET5Gv21111700). The transfer of beneficial genes from A. tauschii to wheat using marker-assisted selection will broaden the wheat D subgenome improve the efficiency of breeding.

8.
ACS Appl Mater Interfaces ; 12(45): 50962-50970, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33138359

RESUMEN

Designing and constructing a stable water-retention layer acting as the isolation between the oil and membrane surface holds great significance for solving the membrane fouling problems in oil/water separation, including common layered oil/water mixtures, immiscible oil-in-water emulsions, and even high-viscosity crude oil-in-water emulsions. Inspired by the self-cleaning property of sea urchin thorns, a bioinspired anti-oil-fouling hierarchically structured membranes decorated with urchin-like α-FeOOH particles was successfully prepared via the layer-by-layer (LBL) self-assembly method, maintaining numerous effective micro-nanopores. The hierarchical structured membrane exhibited superior superhydrophilicity/underwater superoleophobicity, high water-retention ability, and preferable anti-oil-fouling properties. Furthermore, the biomimetic membrane with controllable pore sizes could not only separate common layered oil/water mixtures but also effectively separate immiscible surfactant-stabilized oil-in-water emulsions of both low-viscosity crude oil and high-viscosity crude oil with an ultrahigh water flux up to 2598.4 L m-2 h-1 and an outstanding separation efficiency of 98.5%, revealing its promising prospect in oily wastewater treatment.

9.
Front Genet ; 11: 706, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849772

RESUMEN

Microsatellites or simple sequence repeats (SSRs) are short tandem repeats of DNA widespread in genomes and transcriptomes of diverse organisms and are used in various genetic studies. Few software programs that mine SSRs can be further used to mine polymorphic SSRs, and these programs have poor portability, have slow computational speed, are highly dependent on other programs, and have low marker development rates. In this study, we develop an algorithm named Simple Sequence Repeat Molecular Marker Developer (SSRMMD), which uses improved regular expressions to rapidly and exhaustively mine perfect SSR loci from any size of assembled sequence. To mine polymorphic SSRs, SSRMMD uses a novel three-stage method to assess the conservativeness of SSR flanking sequences and then uses the sliding window method to fragment each assembled sequence to assess its uniqueness. Furthermore, molecular biology assays support the polymorphic SSRs identified by SSRMMD. SSRMMD is implemented using the Perl programming language and can be downloaded from https://github.com/GouXiangJian/SSRMMD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA