Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 116(1): 110758, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065236

RESUMEN

Testicular fusion of Spodoptera litura occures during metamorphosis, which benefits sperms development. Previous research identified involvement of ECM-integrin interaction pathways, MMPs in testicular fusion, but the regulatory mechanism remains unclear. RNA-seq was performed to analyze long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in testes, aiming to uncover potential regulatory mechanisms of testicular fusion. 2150 lncRNAs, 2742 targeted mRNAs, and 347 miRNAs were identified in testes at three different developmental stages. Up-regulated DElncRNAs and DEmRNAs, as well as down-regulated DEmiRNAs, were observed during testicular fusion, while the opposite expression pattern was observed after fusion. Enrichment analysis of DEmRNAs revealed that cAMP signal pathway, ECM remodeling enzymes, ECM-integrin interaction pathways, and cell adhesion molecules were potentially associated with testicular fusion. The identified DElncRNA-DEmiRNA-DEmRNA regulatory network related to cAMP signal pathway, ECM remodeling enzymes suggests their roles during testicular fusion. Our research will provide new targets for studying the mechanism of testicular fusion.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Masculino , Animales , MicroARNs/genética , MicroARNs/metabolismo , Testículo/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Integrinas/genética , Redes Reguladoras de Genes
2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33963082

RESUMEN

Toll/Toll-like receptors (TLRs) are key regulators of the innate immune system in both invertebrates and vertebrates. However, while mammalian TLRs directly recognize pathogen-associated molecular patterns, the insect Toll pathway is thought to be primarily activated by binding Spätzle cytokines that are processed from inactive precursors in response to microbial infection. Phylogenetic and structural data generated in this study supported earlier results showing that Toll9 members differ from other insect Tolls by clustering with the mammalian TLR4 group, which recognizes lipopolysaccharide (LPS) through interaction with myeloid differentiation-2 (MD-2)-like proteins. Functional experiments showed that BmToll9 from the silkmoth Bombyx mori also recognized LPS through interaction with two MD-2-like proteins, previously named BmEsr16 and BmPP, that we refer to in this study as BmMD-2A and BmMD-2B, respectively. A chimeric BmToll9-TLR4 receptor consisting of the BmToll9 ectodomain and mouse TLR4 transmembrane and Toll/interleukin-1 (TIR) domains also activated LPS-induced release of inflammatory factors in murine cells but only in the presence of BmMD-2A or BmMD-2B. Overall, our results indicate that BmToll9 is a pattern recognition receptor for LPS that shares conserved features with the mammalian TLR4-MD-2-LPS pathway.


Asunto(s)
Bombyx/metabolismo , Proteínas de Insectos/metabolismo , Mamíferos/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Péptidos Antimicrobianos/genética , Bombyx/citología , Bombyx/genética , Línea Celular , Cuerpo Adiposo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hemocitos/metabolismo , Humanos , Proteínas de Insectos/genética , Lipopolisacáridos/farmacología , Mamíferos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Células RAW 264.7 , Receptores de Reconocimiento de Patrones/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 9/genética
3.
J Biol Chem ; 294(26): 10172-10181, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31088910

RESUMEN

The Toll signaling pathway in Drosophila melanogaster regulates several immune-related functions, including the expression of antimicrobial peptide (AMP) genes. The canonical Toll receptor (Toll-1) is activated by the cytokine Spätzle (Spz-1), but Drosophila encodes eight other Toll genes and five other Spz genes whose interactions with one another and associated functions are less well-understood. Here, we conducted in vitro assays in the Drosophila S2 cell line with the Toll/interleukin-1 receptor (TIR) homology domains of each Toll family member to determine whether they can activate a known target of Toll-1, the promoter of the antifungal peptide gene drosomycin. All TIR family members activated the drosomycin promoter, with Toll-1 and Toll-7 TIRs producing the highest activation. We found that the Toll-1 and Toll-7 ectodomains bind Spz-1, -2, and -5, and also vesicular stomatitis virus (VSV) virions, and that Spz-1, -2, -5, and VSV all activated the promoters of drosomycin and several other AMP genes in S2 cells expressing full-length Toll-1 or Toll-7. In vivo experiments indicated that Toll-1 and Toll-7 mutants could be systemically infected with two bacterial species (Enterococcus faecalis and Pseudomonas aeruginosa), the opportunistic fungal pathogen Candida albicans, and VSV with different survival times in adult females and males compared with WT fly survival. Our results suggest that all Toll family members can activate several AMP genes. Our results further indicate that Toll-1 and Toll-7 bind multiple Spz proteins and also VSV, but they differentially affect adult survival after systemic infection, potentially because of sex-specific differences in Toll-1 and Toll-7 expression.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Infecciones Bacterianas/microbiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Receptores Toll-Like/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/microbiología , Femenino , Masculino , Regiones Promotoras Genéticas , Transducción de Señal , Receptores Toll-Like/genética
4.
Arch Insect Biochem Physiol ; 103(1): e21626, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31562754

RESUMEN

Insects can produce various antimicrobial peptides (AMPs) upon immune stimulation. One class of AMPs are characterized by their high proline content in certain fragments. They are generally called proline-rich antimicrobial peptides (PrAMPs). We previously reported the characterization of Spodoptera litura lebocin-1 (SlLeb-1), a PrAMP proprotein. Preliminary studies with synthetic polypeptides showed that among the four deductive active fragments, the C-terminal fragment SlLeb-1 (124-158) showed strong antibacterial activities. Here, we further characterized the antibacterial and antifungal activities of 124-158 and its four subfragments: 124-155, 124-149, 127-158, and 135-158. Only 124-158 and 127-158 could agglutinate bacteria, while 124-158 and four subfragments all could agglutinate Beauveria bassiana spores. Confocal microscopy showed that fluorescent peptides were located on the microbial surface. Fragment 135-158 lost activity completely against Escherichia coli and Staphylococcus aureus, and partially against Bacillus subtilis. Only 124-149 showed low activity against Serratia marcescens. Negative staining, transmission, and scanning electron microscopy of 124-158 treated bacteria showed different morphologies. Flow cytometry analysis of S. aureus showed that 124-158 and four subfragments changed bacterial subpopulations and caused an increase of DNA content. These results indicate that active fragments of SlLeb-1 may have diverse antimicrobial effects against different microbes. This study may provide an insight into the development of novel antimicrobial agents.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de Insectos/farmacología , Spodoptera/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Bacillus subtilis/efectos de los fármacos , Beauveria/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Proteínas de Insectos/química , Serratia marcescens/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
5.
Pestic Biochem Physiol ; 162: 96-104, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31836060

RESUMEN

Galectins are a family of ß-galactoside binding proteins, and insect galectins play a role in immune responses and may also affect Cry toxin activity. In this study, we aimed to further understand the function and molecular mechanism of Aedes aegypti galectin-6 in modulation of Cry11Aa toxicity. A. aegypti galectin-6 was cloned, and the recombinant galectin-6 was expressed and purified. Bioassays indicated that galectin-6 could reduce the toxicity of Cry11Aa, protecting A. aegypti larvae. To determine interactions among galectin-6, Cry11Aa and putative toxin receptors, Octet Red System, western blotting, far-western blotting and ELISA assays were performed. Octet Red System showed that galectin-6 bound to BBMVs of A. aegypti larvae with lower affinity than that of Cry11Aa. Western blotting and far-western blotting analyses demonstrated that galectin-6 bound to A. aegypti ALP1 and APN2 as well as to BBMVs, consistent with the results of ELISA and protein docking simulations. However, galectin-6 did not bind to Cadherin in far-western blotting or ELISA assay, though the protein docking simulations suggested their binding potential. These findings support the conclusion that galectin-6 may block Cry11Aa from binding to ALP1 and APN2 due to structural similarity, which might decrease the mosquitocidal toxicity of Cry11Aa.


Asunto(s)
Aedes , Bacillus thuringiensis , Animales , Proteínas Bacterianas , Endotoxinas , Galectinas , Proteínas Hemolisinas , Proteínas de Insectos , Larva
6.
Fish Shellfish Immunol ; 92: 276-287, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31181341

RESUMEN

In invertebrates, both fibrinogen-related proteins (FREPs) and C-type lectins are acknowledged to act as pattern recognition receptors (PRRs) to participate particularly in an innate immunity. Hereby, a unique C-type lectin designated as FmLFd was isolated from the hemocytes of Fenneropenaeus merguiensis. FmLFd contained one open reading frame which encoding a peptide of 312 amino acid residues and a signal peptide of 18 amino acids. The primary sequence of FmLFd was composed of a fibrinogen-like domain (Fd) with a Ca2+-binding site and possessing specificity to bind N-acetyl glucosamine (GlcNAc). The FmLFd transcripts were detected mainly in hemocytes of healthy shrimp. The expression of FmLFd was significantly up-regulated upon challenge shrimp with Vibrio parahaemolyticus and Vibrio harveyi which more potent than by white spot syndrome virus (WSSV). The knocking down shrimp with FmLFd double-stranded RNA caused dramatical gene down-regulation. The gene silencing with co-injection of pathogens resulted in reduction of the shrimp survival rate. Recombinant protein of FmLFd (rFmLFd) could agglutinate and bind directly to both Gram-negative and Gram-positive bacteria in a Ca2+-dependent manner and showed the sugar specificity to GlcNAc and bacterial saccharides; peptidoglycan (PGN), lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Recombinant protein of Fd domain (rFd) displayed the lower activity and specificity only to PGN. The binding between recombinant proteins of FmLFd and its domain confirming by ELISA demonstrated that both rFmLFd and rFd could bind to PGN, LPS and LTA with the highest affinity respected to PGN including a less extent of rFd. Besides, rFmLFd but not rFd could bind to WSSV proteins with the highest binding affinity to capsid VP15 and decreasing in order to envelope VP28 and tegument VP39A, respectively. It was presumed that entire molecule of FmLFd exhibited the antimicrobial ability by inhibiting the growth of pathogenic V. parahaemolyticus and this action was not affected by GlcNAc. Otherwise, FmLFd, a lectin containing fibrinogen-like domain, was firstly reported to be capable of promoting encapsulation by hemocytes. Altogether, we concluded that FmLFd belonged to a FREP family indentified by the existence of a conserved fibrinogen-like domain with possessing an ability to bind GlcNAc. It was a new C-type lectin existed in F. merguiensis and might presumably act as a kind of PRRs to participate in the shrimp immune defense towards bacterial and viral pathogens.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Penaeidae/genética , Penaeidae/inmunología , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Perfilación de la Expresión Génica , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Lectinas Tipo C/química , Lipopolisacáridos/farmacología , Peptidoglicano/farmacología , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Ácidos Teicoicos/farmacología
7.
Adv Exp Med Biol ; 1209: 79-108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728866

RESUMEN

Pattern recognition receptors (PRRs) are sensors of exogenous and endogenous "danger" signals from pathogen-associated molecular patterns (PAMPs), and damage associated molecular patterns (DAMPs), while autophagy can respond to these signals to control homeostasis. Almost all PRRs can induce autophagy directly or indirectly. Toll-like receptors (TLRs), Nod-like receptors (NLRs), retinoic acid-inducible gene-I-like receptors (RLRs), and cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway can induce autophagy directly through Beclin-1 or LC3-dependent pathway, while the interactions with the receptor for advanced glycation end products (RAGE)/high mobility group box 1 (HMGB1), CD91/Calreticulin, and TLRs/HSPs are achieved by protein, Ca2+, and mitochondrial homeostasis. Autophagy presents antigens to PRRs and helps to clean the pathogens. In addition, the induced autophagy can form a negative feedback regulation of PRRs-mediated inflammation in cell/disease-specific manner to maintain homeostasis and prevent excessive inflammation. Understanding the interaction between PRRs and autophagy in a specific disease will promote drug development for immunotherapy. Here, we focus on the interactions between PRRs and autophagy and how they affect the inflammatory response.


Asunto(s)
Autofagia , Inflamación , Receptores de Reconocimiento de Patrones , Autofagia/inmunología , Humanos , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal
8.
Dev Biol ; 420(1): 79-89, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27742209

RESUMEN

Dynamitin (Dmn) is a major component of dynactin, a multiprotein complex playing important roles in a variety of intracellular motile events. We previously found that Wolbachia bacterial infection resulted in a reduction of Dmn protein. As Wolbachia may modify sperm in male hosts, we speculate that Dmn may have a function in male fertility. Here we used nosGal4 to drive Dmn knock down in testes of Drosophila melanogaster to investigate the functions of Dmn in spermatogenesis. We found that knockdown of Dmn in testes dramatically decreased male fertility, overexpression of Dmn in Wolbachia-infected males significantly rescued male fertility, indicating an important role of Dmn in inducing male fertility defects following Wolbachia infection. Some scattered immature sperm with late canoe-shaped head distributed in the end of Dmn knockdown testis and only about half mature sperm were observed in the Dmn knockdown testis relative to those in the control. Transmission electron microscopy (TEM) exhibited fused spermatids in cysts and abnormal mitochondrial derivatives. Immunofluorescence staining showed significantly less abundance of tubulin around the nucleus of spermatid and scattered F-actin cones to different extents in the individualization complex (IC) during spermiogenesis in Dmn knockdown testes, which may disrupt the nuclear condensation and sperm individualization. Since dynein-dynactin complex has been shown to mediate transport of many cellular components, including mRNAs and organelles, these results suggest that Dmn may play an important role in Drosophila spermiogenesis by affecting transport of many important cytoplasmic materials.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Técnicas de Silenciamiento del Gen , Proteínas de Filamentos Intermediarios/metabolismo , Testículo/fisiología , Animales , Núcleo Celular/metabolismo , Dineínas/metabolismo , Fertilidad , Regulación de la Expresión Génica , Masculino , Mitocondrias/metabolismo , Espermátides/metabolismo , Espermatogénesis , Tubulina (Proteína)/metabolismo
9.
J Biol Chem ; 291(14): 7488-504, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26846853

RESUMEN

The Toll signaling pathway plays an important role in the innate immunity ofDrosophila melanogasterand mammals. The activation and termination of Toll signaling are finely regulated in these animals. Although the primary components of the Toll pathway were identified in shrimp, the functions and regulation of the pathway are seldom studied. We first demonstrated that the Toll signaling pathway plays a central role in host defense againstStaphylococcus aureusby regulating expression of antimicrobial peptides in shrimp. We then found that ß-arrestins negatively regulate Toll signaling in two different ways. ß-Arrestins interact with the C-terminal PEST domain of Cactus through the arrestin-N domain, and Cactus interacts with the RHD domain of Dorsal via the ankyrin repeats domain, forming a heterotrimeric complex of ß-arrestin·Cactus·Dorsal, with Cactus as the bridge. This complex prevents Cactus phosphorylation and degradation, as well as Dorsal translocation into the nucleus, thus inhibiting activation of the Toll signaling pathway. ß-Arrestins also interact with non-phosphorylated ERK (extracellular signal-regulated protein kinase) through the arrestin-C domain to inhibit ERK phosphorylation, which affects Dorsal translocation into the nucleus and phosphorylation of Dorsal at Ser(276)that impairs Dorsal transcriptional activity. Our study suggests that ß-arrestins negatively regulate the Toll signaling pathway by preventing Dorsal translocation and inhibiting Dorsal phosphorylation and transcriptional activity.


Asunto(s)
Arrestinas/inmunología , Proteínas de Artrópodos/inmunología , Penaeidae/inmunología , Transducción de Señal/inmunología , Staphylococcus aureus/inmunología , Receptores Toll-Like/inmunología , Transporte Activo de Núcleo Celular/inmunología , Animales , Núcleo Celular/inmunología , Proteínas de Unión al ADN/inmunología , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Fosforilación/inmunología , beta-Arrestinas
10.
BMC Genomics ; 18(1): 162, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28196471

RESUMEN

BACKGROUND: Serine protease inhibitors (SPIs) have been found in all living organisms and play significant roles in digestion, development and innate immunity. In this study, we present a genome-wide identification and expression profiling of SPI genes in the diamondback moth, Plutella xylostella (L.), a major pest of cruciferous crops with global distribution and broad resistance to different types of insecticides. RESULTS: A total of 61 potential SPI genes were identified in the P. xylostella genome, and these SPIs were classified into serpins, canonical inhibitors, and alpha-2-macroglobulins based on their modes of action. Sequence alignments showed that amino acid residues in the hinge region of known inhibitory serpins from other insect species were conserved in most P. xylostella serpins, suggesting that these P. xylostella serpins may be functionally active. Phylogenetic analysis confirmed that P. xylostella inhibitory serpins were clustered with known inhibitory serpins from six other insect species. More interestingly, nine serpins were highly similar to the orthologues in Manduca sexta which have been demonstrated to participate in regulating the prophenoloxidase activation cascade, an important innate immune response in insects. Of the 61 P.xylostella SPI genes, 33 were canonical SPIs containing seven types of inhibitor domains, including Kunitz, Kazal, TIL, amfpi, Antistasin, WAP and Pacifastin. Moreover, some SPIs contained additional non-inhibitor domains, including spondin_N, reeler, and other modules, which may be involved in protein-protein interactions. Gene expression profiling showed gene-differential, stage- and sex-specific expression patterns of SPIs, suggesting that SPIs may be involved in multiple physiological processes in P. xylostella. CONCLUSIONS: This is the most comprehensive investigation so far on SPI genes in P. xylostella. The characterized features and expression patterns of P. xylostella SPIs indicate that the SPI family genes may be involved in innate immunity of this species. Our findings provide valuable information for uncovering further biological roles of SPI genes in P. xylostella.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Inhibidores de Serina Proteinasa/farmacología , Transcriptoma , Secuencia de Aminoácidos , Animales , Análisis por Conglomerados , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/química , Proteínas de Insectos/genética , Estadios del Ciclo de Vida/genética , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/crecimiento & desarrollo , Filogenia , Serpinas/química , Serpinas/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-28618068

RESUMEN

C-type lectins (CTLs) play a variety of roles in plants and animals. They are involved in animal development, pathogen recognition, and the activation of immune responses. CTLs carry one or more non-catalytic carbohydrate-recognition domains (CRDs) to bind specific carbohydrates reversibly. Here, we report the molecular cloning and functional analysis of a single-CRD CTL, named C-type lectin-S2 (BmCTL-S2) from the domesticated silkmoth Bombyx mori (Lepidoptera: Bombycidae). The ORF of CTL-S2 is 666 bp, which encodes a putative protein of 221 amino acids. BmCTL-S2 is expressed in a variety of immune-related tissues, including hemocytes and fat body among others. BmCTL-S2 mRNA level in the midgut and the fat body was significantly increased by bacterial challenges. The recombinant protein (rBmCTL-S2) bound different bacterial cell wall components and bacterial cells. rBmCTL-S2 also inhibited the growth of Bacillus subtilis and Staphylococcus aureus. Taken together, we infer that BmCTL-S2 is a pattern-recognition receptor with antibacterial activities.


Asunto(s)
Bombyx/metabolismo , Lectinas Tipo C/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bombyx/genética , Bombyx/inmunología , Cuerpo Adiposo/metabolismo , Proteínas de Insectos/aislamiento & purificación , Proteínas de Insectos/fisiología , Larva/inmunología , Larva/metabolismo , Lectinas Tipo C/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Análisis de Secuencia de ADN
12.
Fish Shellfish Immunol ; 44(1): 224-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25542377

RESUMEN

Mud crab reovirus (MCRV) is the causative agent of a severe disease in cultured mud crab (Scylla paramamosain), which has caused huge economic losses in China. MCRV is a double-stranded RNA virus with 12 genomic segments. In this paper, SDS-PAGE, mass spectrometry and Western blot analyses revealed that the VP12 protein encoded by S12 gene is a structural protein of MCRV. Immune electron microscopy assay indicated that MCRV VP12 is a component of MCRV outer shell capsid. Yeast two hybrid cDNA library of mud crab was constructed and mud crab voltage-dependent anion-selective channel (mcVDAC) was obtained by MCRV VP12 screening. The full length of mcVDAC was 1180 bp with an open reading frame (ORF) of 849 bp encoding a 282 amino acid protein. The mcVDAC had a constitutive expression pattern in different tissues of mud crab. The interaction between MCRV VP12 and mcVDAC was determined by co-immunoprecipitation assay. The results of this study have provided an insight on the mechanisms of MCRV infection and the interactions between the virus and mud crab.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Braquiuros , Reoviridae , Proteínas Estructurales Virales/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Secuencia de Bases , Braquiuros/metabolismo , Braquiuros/virología , Escherichia coli/genética , Branquias/metabolismo , Células HeLa , Hepatopáncreas/metabolismo , Humanos , Microscopía Electrónica , Datos de Secuencia Molecular , Reoviridae/fisiología , Reoviridae/ultraestructura , Proteínas Estructurales Virales/genética , Canales Aniónicos Dependientes del Voltaje/genética
13.
Appl Microbiol Biotechnol ; 98(13): 5807-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24811407

RESUMEN

Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20-50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Proteínas de Insectos/farmacología , Insectos/química , Virus/efectos de los fármacos , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/clasificación , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Proteínas de Insectos/química , Proteínas de Insectos/clasificación , Proteínas de Insectos/aislamiento & purificación , Conformación Proteica
14.
Insect Sci ; 31(1): 79-90, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37465843

RESUMEN

Spermatogenesis is a critical part of reproduction in insects; however, its molecular mechanism is still largely unknown. In this study, we identified a testis-specific gene CG3526 in Drosophila melanogaster. Bioinformatics analysis showed that CG3526 contains a zinc binding domain and 2 C2 H2 type zinc fingers, and it is clustered to the vertebrate really interesting new gene (RING) family E3 ubiquitin-protein ligases. When CG3526 was knocked down by RNA interference (RNAi), the testis became much smaller in size, and the apical tip exhibited a sharp and thin end instead of the blunt and round shape in the control testis. More importantly, compared to the control flies, only a few mature sperm were present in the seminal vesicle of C587-Gal4 > CG3526 RNAi flies. Immunofluorescence staining of the testis from CG3526 RNAi flies showed that the homeostasis of testis stem cell niche was disrupted, cell distribution in the apical tip was scattered, and the process of spermatogenesis was not completed. Furthermore, we found that the phenotype of CG3526 RNAi flies' testis was similar to that of testis of Stat92E RNAi flies, the expression level of CG3526 was significantly downregulated in the Stat92EF06346 mutant flies, and the promoter activity of CG3526 was upregulated by STAT92E. Taken together, our results indicated that CG3526 is a downstream effector gene in the JAK-STAT signaling pathway that plays a key role in the spermatogenesis of Drosophila.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Masculino , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Semen/metabolismo , Espermatogénesis/genética , Testículo/metabolismo , Drosophila/metabolismo
15.
Insects ; 15(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39057213

RESUMEN

Spermatogenesis is critical for insect reproduction and is regulated by many different genes. In this study, we found that Forkhead transcription factor Fd59a functions as a key factor in the spermatogenesis of Drosophila melanogaster. Fd59a contains a conversed Forkhead domain, and it is clustered to the FoxD subfamily with other FoxD members from some insect and vertebrate species. Mutations in Fd59a caused swelling in the apical region of the testis. More importantly, fewer mature sperm were present in the seminal vesicle of Fd59a mutant flies compared to the control flies, and the fertility of Fd59a2/2 mutant males was significantly lower than that of the control flies. Immunofluorescence staining showed that the homeostasis of the testis stem cell niche in Fd59a2/2 mutant and Fd59a RNAi flies was disrupted and the apoptosis of sperm bundles was increased. Furthermore, results from RNA sequencing and qRT-PCR suggested that Fd59a can regulate the expression of genes related to reproductive process and cell death. Taken together, our results indicated that Fd59a plays a key role in the spermatogenesis of Drosophila.

16.
iScience ; 27(2): 108795, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38292423

RESUMEN

Macroautophagy/autophagy is a conserved process in eukaryotic cells to degrade and recycle damaged intracellular components. Higher level of autophagy in the brain has been observed, and autophagy dysfunction has an impact on neuronal health, but the molecular mechanism is unclear. In this study, we showed that overexpression of Toll-1 and Toll-7 receptors, as well as active Spätzle proteins in Drosophila S2 cells enhanced autophagy, and Toll-1/Toll-7 activated autophagy was dependent on Tube-Pelle-PP2A. Interestingly, Toll-1 but not Toll-7 mediated autophagy was dMyd88 dependent. Importantly, we observed that loss of functions in Toll-1 and Toll-7 receptors and PP2A activity in flies decreased autophagy level, resulting in the loss of dopamine (DA) neurons and reduced fly motion. Our results indicated that proper activation of Toll-1 and Toll-7 pathways and PP2A activity in the brain are necessary to sustain autophagy level for DA neuron survival.

17.
Insect Sci ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643371

RESUMEN

Spermatogenesis is critical for insect reproduction and the process is regulated by multiple genes. Glycosyltransferases have been shown to participate in the development of Drosophila melanogaster; however, their role in spermatogenesis is still unclear. In this study, we found that α1,4-galactosyltransferase 1 (α4GT1) was expressed at a significantly higher level in the testis than in the ovary of Drosophila. Importantly, the hatching rate was significantly decreased when α4GT1 RNA interference (RNAi) males were crossed with w1118 females, with only a few mature sperm being present in the seminal vesicle of α4GT1 RNAi flies. Immunofluorescence staining further revealed that the individualization complex (IC) in the testes from α4GT1 RNAi flies was scattered and did not move synchronically, compared with the clustered IC observed in the control flies. Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay showed that apoptosis signals in the sperm bundles of α4GT1 RNAi flies were significantly increased. Moreover, the expression of several individualization-related genes, such as Shrub, Obp44a and Hanabi, was significantly decreased, whereas the expression of several apoptosis-related genes, including Dronc and Drice, was significantly increased in the testes of α4GT1 RNAi flies. Together, these results suggest that α4GT1 may play dual roles in Drosophila spermatogenesis by regulating the sperm individualization process and maintaining the survival of sperm bundles.

18.
J Virol ; 86(5): 2621-31, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22171272

RESUMEN

Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus from the family Iridoviridae. Megalocytiviruses have been implicated in more than 50 fish species infections and currently threaten the aquaculture industry, causing great economic losses in China, Japan, and Southeast Asia. However, the cellular entry mechanisms of megalocytiviruses remain largely uncharacterized. In this study, the main internalization mechanism of ISKNV was investigated by using mandarin fish fry (MFF-1) cells. The progression of ISKNV infection is slow, and infection is not inhibited when the cells are treated with ammonium chloride (NH(4)Cl), chloroquine, sucrose, and chlorpromazine, which are inhibitors of clathrin-dependent endocytosis. The depletion of cellular cholesterol by methyl-ß-cyclodextrin results in the significant inhibition of ISKNV infection; however, the infection is resumed with cholesterol replenishment. Inhibitors of caveolin-1-involved signaling events, including phorbol 12-myristate 13-acetate (PMA), genistein, and wortmannin, impair ISKNV entry into MFF-1 cells. Moreover, ISKNV entry is dependent on dynamin and the microtubule cytoskeleton. Cofraction analysis of ISKNV and caveolin-1 showed that ISKNV colocates with caveolin-1 during virus infection. These results indicate that ISKNV entry into MFF-1 cells proceeds via classical caveola-mediated endocytosis and is dependent on the microtubules that serve as tracks along which motile cavicles may move via a caveola-caveosome-endoplasmic reticulum (ER) pathway. As a fish iridovirus, ISKNV entry into MFF-1 cells is different from the clathrin-mediated endocytosis of frog virus 3 entry into mammalian cells (BHK-21) at 28°C, which has been recognized as a model for iridoviruses. Thus, our work may help further the understanding of the initial steps of iridovirus infection.


Asunto(s)
Caveolina 1/metabolismo , Infecciones por Virus ADN/veterinaria , Endocitosis , Enfermedades de los Peces/virología , Iridovirus/fisiología , Animales , Línea Celular , China , Infecciones por Virus ADN/metabolismo , Infecciones por Virus ADN/fisiopatología , Infecciones por Virus ADN/virología , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/fisiopatología , Peces , Iridovirus/genética , beta-Ciclodextrinas/metabolismo
19.
Chemistry ; 19(2): 621-9, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23229190

RESUMEN

A new phosphorescent dinuclear cationic iridium(III) complex (Ir1) with a donor-acceptor-π-bridge-acceptor-donor (D-A-π-A-D)-conjugated oligomer (L1) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited-state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular-orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)(2)(bpy)](+)PF(6)(-) (Ir0). Compared with Ir0, complex Ir1 shows a more-intense optical-absorption capability, especially in the visible-light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 10(4) , which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange-red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two-photon-absorption properties of complexes Ir0, Ir1, and L1. The free ligand (L1) has a relatively small two-photon absorption cross-section (δ(max) =195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1, it exhibits a higher two-photon-absorption cross-section than ligand L1 in the near-infrared region and an intense two-photon-excited phosphorescent emission. The maximum two-photon-absorption cross-section of Ir1 is 481 GM, which is also significantly larger than that of Ir0. In addition, because the strong B-F interaction between the dimesitylboryl groups and F(-) ions interrupts the extended π-conjugation, complex Ir1 can be used as an excellent one- and two-photon-excited "ON-OFF" phosphorescent probe for F(-) ions.


Asunto(s)
Iridio/química , Sustancias Luminiscentes/química , Sustancias Luminiscentes/síntesis química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Fotones , Absorción , Técnicas de Química Sintética , Flúor/química , Modelos Moleculares , Conformación Molecular , Fenómenos Ópticos
20.
Fish Shellfish Immunol ; 34(5): 1287-93, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23454418

RESUMEN

Toll receptor was first discovered in Drosophila and has an important function in the innate immunity of invertebrates. In this study, the Toll receptor HcToll1 from Hyriopsis cumingii with a full length of 3810 bp consisting of a 3687 bp ORF that encodes a total of 1228 amino acids protein was selected for further study. The HcToll1 protein consisted of a signal peptide, 17 LRR domains, 2 LRRCT domains, 1 LRRNT domain, 1 TM domain, and 1 TIR domain. Phylogenetic analysis results showed that HcToll1 was clustered in one group together with other mollusca tolls. RT-PCR analysis results showed that HcToll1 was expressed in all tested tissues such as hemocytes, hepatopancreas, gills, and mantle. qRT-PCR analysis results showed that HcToll1 expression was increased by the presence of Escherichia coli, Vibrio anguillarum, Staphyloccocus aureus, and White Spot Syndrome Virus (WSSV). Over-expression of HcTIR could up-regulate expression of drosomycin gene in Drosophila S2 cells. The results of our study indicated that HcToll1 is a functional Toll and it has an important function in the generation of innate immune responses of H. cumingii against microbial challenge.


Asunto(s)
Receptor Toll-Like 1/genética , Receptor Toll-Like 1/inmunología , Unionidae/genética , Unionidae/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Escherichia coli/fisiología , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Especificidad de Órganos , Filogenia , ARN/genética , ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Staphylococcus aureus/fisiología , Receptor Toll-Like 1/química , Unionidae/química , Vibrio/fisiología , Virus del Síndrome de la Mancha Blanca 1/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA