Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31866069

RESUMEN

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Asunto(s)
Células Madre Adultas/metabolismo , Fibrosis Pulmonar Idiopática/etiología , Alveolos Pulmonares/metabolismo , Células Madre Adultas/patología , Anciano , Células Epiteliales Alveolares/patología , Animales , Fenómenos Biomecánicos/fisiología , Femenino , Fibrosis/patología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Masculino , Ratones , Persona de Mediana Edad , Alveolos Pulmonares/patología , Regeneración , Transducción de Señal , Células Madre/patología , Estrés Mecánico , Estrés Fisiológico/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
3.
Nature ; 600(7888): 334-338, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34789879

RESUMEN

The N-degron pathway targets proteins that bear a destabilizing residue at the N terminus for proteasome-dependent degradation1. In yeast, Ubr1-a single-subunit E3 ligase-is responsible for the Arg/N-degron pathway2. How Ubr1 mediates the initiation of ubiquitination and the elongation of the ubiquitin chain in a linkage-specific manner through a single E2 ubiquitin-conjugating enzyme (Ubc2) remains unknown. Here we developed chemical strategies to mimic the reaction intermediates of the first and second ubiquitin transfer steps, and determined the cryo-electron microscopy structures of Ubr1 in complex with Ubc2, ubiquitin and two N-degron peptides, representing the initiation and elongation steps of ubiquitination. Key structural elements, including a Ubc2-binding region and an acceptor ubiquitin-binding loop on Ubr1, were identified and characterized. These structures provide mechanistic insights into the initiation and elongation of ubiquitination catalysed by Ubr1.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Sitios de Unión , Biocatálisis , Microscopía por Crioelectrón , Lisina/metabolismo , Modelos Moleculares , Proteolisis , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/ultraestructura , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura
4.
Nucleic Acids Res ; 52(9): 4969-4984, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38452206

RESUMEN

Proteasome-mediated degradation of chromatin-bound NF-κB is critical in terminating the transcription of pro-inflammatory genes and can be triggered by Set9-mediated lysine methylation of the RelA subunit. However, the E3 ligase targeting methylated RelA remains unknown. Here, we find that two structurally similar substrate-recognizing components of Cullin-RING E3 ligases, WSB1 and WSB2, can recognize chromatin-bound methylated RelA for polyubiquitination and proteasomal degradation. We showed that WSB1/2 negatively regulated a subset of NF-κB target genes via associating with chromatin where they targeted methylated RelA for ubiquitination, facilitating the termination of NF-κB-dependent transcription. WSB1/2 specifically interacted with methylated lysines (K) 314 and 315 of RelA via their N-terminal WD-40 repeat (WDR) domains, thereby promoting ubiquitination of RelA. Computational modeling further revealed that a conserved aspartic acid (D) at position 158 within the WDR domain of WSB2 coordinates K314/K315 of RelA, with a higher affinity when either of the lysines is methylated. Mutation of D158 abolished WSB2's ability to bind to and promote ubiquitination of methylated RelA. Together, our study identifies a novel function and the underlying mechanism for WSB1/2 in degrading chromatin-bound methylated RelA and preventing sustained NF-κB activation, providing potential new targets for therapeutic intervention of NF-κB-mediated inflammatory diseases.


Asunto(s)
Cromatina , Complejo de la Endopetidasa Proteasomal , Factor de Transcripción ReIA , Ubiquitinación , Humanos , Cromatina/metabolismo , Células HEK293 , Lisina/metabolismo , Metilación , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Factor de Transcripción ReIA/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
5.
PLoS Genet ; 18(3): e1010107, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35298462

RESUMEN

Nonrandom selection in one-sample Mendelian Randomization (MR) results in biased estimates and inflated type I error rates only when the selection effects are sufficiently large. In two-sample MR, the different selection mechanisms in two samples may more seriously affect the causal effect estimation. Firstly, we propose sufficient conditions for causal effect invariance under different selection mechanisms using two-sample MR methods. In the simulation study, we consider 49 possible selection mechanisms in two-sample MR, which depend on genetic variants (G), exposures (X), outcomes (Y) and their combination. We further compare eight pleiotropy-robust methods under different selection mechanisms. Results of simulation reveal that nonrandom selection in sample II has a larger influence on biases and type I error rates than those in sample I. Furthermore, selections depending on X+Y, G+Y, or G+X+Y in sample II lead to larger biases than other selection mechanisms. Notably, when selection depends on Y, bias of causal estimation for non-zero causal effect is larger than that for null causal effect. Especially, the mode based estimate has the largest standard errors among the eight methods. In the absence of pleiotropy, selections depending on Y or G in sample II show nearly unbiased causal effect estimations when the casual effect is null. In the scenarios of balanced pleiotropy, all eight MR methods, especially MR-Egger, demonstrate large biases because the nonrandom selections result in the violation of the Instrument Strength Independent of Direct Effect (InSIDE) assumption. When directional pleiotropy exists, nonrandom selections have a severe impact on the eight MR methods. Application demonstrates that the nonrandom selection in sample II (coronary heart disease patients) can magnify the causal effect estimation of obesity on HbA1c levels. In conclusion, nonrandom selection in two-sample MR exacerbates the bias of causal effect estimation for pleiotropy-robust MR methods.


Asunto(s)
Variación Genética , Análisis de la Aleatorización Mendeliana , Sesgo , Causalidad , Pleiotropía Genética , Humanos , Análisis de la Aleatorización Mendeliana/métodos
6.
Anal Chem ; 96(10): 4180-4189, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38436249

RESUMEN

Inflammation has been confirmed to be closely related to the development of tumors, while peroxynitrite (ONOO-) is one of the most powerful oxidative pro-inflammatory factors. Although ONOO- can kill bacteria through oxidation, it will activate matrix metalloproteinases (MMPs), accelerate the degradation of the extracellular matrix (ECM), and subsequently lead to the activation and release of other tumor promotion factors existing in the ECM, promoting tumor metastasis and invasion. Herein, we report a simple aggregation-induced emission (AIE) nanoprobe (NP), TPE-4NMB, that can simultaneously visualize and deplete ONOO-. The probe can light up the endogenous and exogenous ONOO- in cells and selectively inhibit the proliferation and migration of 4T1 cells by inducing an intracellular redox homeostasis imbalance through ONOO- depletion. After being modified with DSPE-PEG2000, the TPE-4NMB NPs can be used to image ONOO- induced by various models in vivo; especially, it can monitor the dynamic changes of ONOO- level in the residual tumor after surgery, which can provide evidence for clarifying the association between surgery, ONOO-, and cancer metastasis. Excitingly, inhibited tumor volume growth and decreased counts of lung metastases were observed in the TPE-4NMB NPs group, which can be attributed to the downregulated expression of MMP-9 and transforming growth factor-ß (TGF-ß), increased cell apoptosis, and inhibited epithelial-mesenchymal transition (EMT) mediated by ONOO-. The results will provide new evidence for clarifying the relationship between surgery, ONOO-, and tumor metastasis and serve as a new intervention strategy for preventing tumor metastasis after tumor resection.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Humanos , Femenino , Ácido Peroxinitroso , Neoplasias Pulmonares/prevención & control , Factor de Crecimiento Transformador beta , Metaloproteinasas de la Matriz/metabolismo , Colorantes Fluorescentes
7.
Small ; : e2405101, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051511

RESUMEN

Carbon quantum dots (CQDs) have attracted more attentions due to their multiple performances. However, the fabrication of long-wavelength emitting CQDs with aliphatic precursors still remains a challenge, mainly because it is difficult to generate large sp2 domains to reduce energy gap, which is not conducive to a redshift of the luminescence peak. Hereon, by regulating the pH of citric acid and thiourea mixture, a N, S co-doped CQD emitting bright red fluorescence at 635 nm is successfully fabricated through the solvothermal reaction under acidic condition, achieving a high quantum yield of 32.66%. Solvatochromic effects of the CQDs are discussed through theoretical equations and models, which confirm that the hydrogen-bonding interaction dominates the fluorescence emission behavior of CQDs in polar solvents. Besides, a feasible strategy is proposed to prepare an anti-counterfeiting textile via the deposition of red-emitting CQDs onto cotton fibers, through rapidly evaporating the preferred organic solvent. As expected, the CQD-decorated textiles exhibit encouraging anti-counterfeiting and security-warning functions, along with underwater and long-distance detectability, washability, and sun resistance. It is worth noting that the present work is innovative in realizing the application of red-light-emitting CQDs in the fields of security-warning textiles.

8.
Mol Carcinog ; 63(7): 1334-1348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38629424

RESUMEN

Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.


Asunto(s)
Tumores del Estroma Gastrointestinal , Proteínas con Homeodominio LIM , Proteínas Musculares , Proteínas Proto-Oncogénicas c-kit , Transducción de Señal , Factores de Transcripción , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Tumores del Estroma Gastrointestinal/metabolismo , Animales , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Mesilato de Imatinib/farmacología , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/metabolismo , Línea Celular Tumoral , Ubiquitinación
9.
Environ Sci Technol ; 58(1): 510-521, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38100654

RESUMEN

Fluorinated liquid crystal monomers (FLCMs) have been suggested as emerging contaminants, raising global concern due to their frequent occurrence, potential toxic effects, and endurance capacity in the environment. However, the environmental fate of the FLCMs remains unknown. To fill this knowledge gap, we investigated the aerobic microbial transformation mechanisms of an important FLCM, 4-[difluoro(3,4,5-trifluorophenoxy)methyl]-3, 5-difluoro-4'-propylbiphenyl (DTMDPB), using an enrichment culture termed as BG1. Our findings revealed that 67.5 ± 2.1% of the initially added DTMDPB was transformed in 10 days under optimal conditions. A total of 14 microbial transformation products obtained due to a series of reactions (e.g., reductive defluorination, ether bond cleavage, demethylation, oxidative hydroxylation and aromatic ring opening, sulfonation, glucuronidation, O-methylation, and thiolation) were identified. Consortium BG1 harbored essential genes that could transform DTMDPB, such as dehalogenation-related genes [e.g., glutathione S-transferase gene (GST), 2-haloacid dehalogenase gene (2-HAD), nrdB, nuoC, and nuoD]; hydroxylating-related genes hcaC, ubiH, and COQ7; aromatic ring opening-related genes ligB and catE; and methyltransferase genes ubiE and ubiG. Two DTMDPB-degrading strains were isolated, which are affiliated with the genus Sphingopyxis and Agromyces. This study provides a novel insight into the microbial transformation of FLCMs. The findings of this study have important implications for the development of bioremediation strategies aimed at addressing sites contaminated with FLCMs.


Asunto(s)
Cristales Líquidos , Biodegradación Ambiental , Hidroxilación
10.
Ecotoxicol Environ Saf ; 279: 116489, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776781

RESUMEN

Combined toxicity is a critical concern during the risk assessment of environmental pollutants. Due to the characteristics of strong hydrophobicity and large specific surface area, microplastics (MPs) and nanoplastics (NPs) have become potential carriers of organic pollutants that may pose a health risk to humans. The co-occurrence of organic pollutants and MPs would cause adverse effects on aquatic organism, while the information about combined toxicity induced by organophosphorus flame retardants and MPs on human cells was limited. This study aimed to reveal the toxicity effects of co-exposure to triphenyl phosphate (TPHP) and polystyrene (PS) particles with micron-size/nano-size on HepG2 cell line. The adsorption behaviors of TPHP on PS particles was observed, with the PS-NP exhibiting a higher adsorption capacity. The reactive oxygen species generation, mitochondrial membrane potential depolarization, lactate dehydrogenase release and cell apoptosis proved that PS-NPs/MPs exacerbated TPHP-induced cytotoxicity. The particle size of PS would affect the toxicity to HepG2 cells that PS-NP (0.07 µm) exhibited more pronounced combined toxicity than PS-MP (1 µm) with equivalent concentrations of TPHP. This study provides fundamental insights into the co-toxicity of TPHP and PS micro/nanoplastics in HepG2 cells, which is crucial for validating the potential risk of combined toxicity in humans.


Asunto(s)
Apoptosis , Retardadores de Llama , Potencial de la Membrana Mitocondrial , Microplásticos , Nanopartículas , Poliestirenos , Especies Reactivas de Oxígeno , Humanos , Células Hep G2 , Poliestirenos/toxicidad , Poliestirenos/química , Nanopartículas/toxicidad , Nanopartículas/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Apoptosis/efectos de los fármacos , Retardadores de Llama/toxicidad , Microplásticos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Tamaño de la Partícula , Organofosfatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Adsorción , Plásticos/toxicidad
11.
J Environ Manage ; 356: 120724, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38527385

RESUMEN

The main challenge facing the anodic electro-Fenton through the 2e- water oxidation reaction (WOR) for toxics degradation lies in the electrode's stability, because the anodic oxygen evolution (OER) generated O2 will inevitably exfoliate the electro-active components loaded on the electrode substrate. To address this point, two aspects need attention: 1) Identifying a catalyst that exhibits both excellent electrocatalytic activity and selectivity can improve the faradaic efficiency of hydrogen peroxide (H2O2); 2) Employing novel methods for fabricating highly stable electrodes, where active sites can be firmly coated. Consequently, this study utilized microarc oxidation (MAO) to prepare a ceramic film electrode Zn2SnO4@Ti at 300 V. Zn2SnO4 acts as an WOR electrocatalyst and further improved the generation of H2O2 for treating real wastewater containing Unsymmetrical Dimethylhydrazine (UDMH). From the perspective of characterization of electrode structure, Zn2SnO4@Ti forms a stable active coating, the electrochemical yield of H2O2 is high up to 78.4 µmol h-1 cm-2, and the selectivity of H2O2 is over 80% at 3.3 V vs. RHE, which can be fully applied to scenarios where it is inconvenient to transport H2O2 and need in-situ safe production. Additionally, the prepared electrodes exhibit significant stability, suitable for various applications, providing insightful preparation strategies and experiences for constructing highly stable anodes.


Asunto(s)
Dimetilhidrazinas , Contaminantes Químicos del Agua , Agua , Peróxido de Hidrógeno/química , Titanio/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Electrodos , Zinc
12.
Int J Cancer ; 153(5): 942-949, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37232081

RESUMEN

Recent epidemiological studies suggested that proton pump inhibitor (PPI) use was associated with an increased risk of biliary tract cancer (BTC), however, confounders were not adequately controlled. Our study aimed to evaluate PPI use and subsequent risk of BTC and its subtypes in three well-established cohorts. We conducted a pooled analysis of the subjects free of cancers in UK Biobank (n = 463 643), Nurses' Health Study (NHS, n = 80 235) and NHS II (n = 95 869). Propensity score weighted Cox models were used to estimate marginal HRs of PPIs use on BTC risk, accounting for potential confounders. We documented 284 BTC cases in UK Biobank (median follow-up: 7.6 years), and 91 cases in NHS and NHS II cohorts (median follow-up: 15.8 years). In UK biobank, PPI users had a 96% higher risk of BTC compared to nonusers in crude model (HR 1.96, 95% CI 1.44-2.66), but the effect was attenuated to null after adjusting for potential confounders (HR 0.95, 95% CI 0.60-1.49). PPI use was not associated with risk of BTC in the pooled analysis of three cohorts (HR 0.93, 95% CI 0.60-1.43). We also observed no associations between PPI use with risk of intrahepatic (HR 1.00, 95% CI 0.49-2.04), extrahepatic bile duct (HR 1.09, 95% CI 0.52-2.27) and gallbladder cancers (HR 0.66, 95% CI 0.26-1.66) in UK Biobank. In summary, regular use of PPIs was not associated with the risk of BTC and its subtypes.


Asunto(s)
Neoplasias del Sistema Biliar , Inhibidores de la Bomba de Protones , Humanos , Inhibidores de la Bomba de Protones/efectos adversos , Factores de Riesgo , Estudios Prospectivos , Incidencia , Neoplasias del Sistema Biliar/inducido químicamente , Neoplasias del Sistema Biliar/epidemiología
13.
Funct Integr Genomics ; 23(2): 77, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36879069

RESUMEN

Atherosclerosis (AS) is the main cause of cardiovascular diseases. However, the role of AQP9 in AS is not well understood. In the present study, we predicted that miR-330-3p might regulate AQP9 in AS through bioinformatics analysis, and we established AS model using ApoE-/- mouse (C57BL/6) with high-fat diet (HFD). Hematoxylin and eosin (H&E) and Oil red O staining were used to determine atherosclerotic lesions. CCK8 and Ethyny1-2-deoxyuridine (EdU) assays were used to investigate human umbilical vein endothelial cells (HUVECs) proliferation after treatment with 100 µg/mL ox-LDL. Wound scratch healing and transwell assays were used to measure the cell invasion and migration ability. Flow cytometry assay was used to determine apoptosis and cell cycle. A dual-luciferase reporter assay was performed to investigate the binding of miR-330-3p and AQP9. We identified that the expression of miR-330-3p in AS mice model decreased while the expression level of AQP9 increased. miR-330-3p overexpression or down-regulation of AQP9 could reduce cell apoptosis, promote cell proliferation, and migration after ox-LDL treatment. Dual-luciferase reporter assay result presented that AQP9 was directly inhibited by miR-330-3p. These results suggest that miR-330-3p inhibits AS by regulating AQP9. miR-330-3p/AQP9 axis may be a new therapeutic target for AS.


Asunto(s)
Acuaporinas , Aterosclerosis , MicroARNs , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Células Endoteliales , Apoptosis/genética , Aterosclerosis/genética , MicroARNs/genética
14.
N Engl J Med ; 382(14): 1299-1308, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242355

RESUMEN

BACKGROUND: It is recommended that patients with acute upper gastrointestinal bleeding undergo endoscopy within 24 hours after gastroenterologic consultation. The role of endoscopy performed within time frames shorter than 24 hours has not been adequately defined. METHODS: To evaluate whether urgent endoscopy improves outcomes in patients predicted to be at high risk for further bleeding or death, we randomly assigned patients with overt signs of acute upper gastrointestinal bleeding and a Glasgow-Blatchford score of 12 or higher (scores range from 0 to 23, with higher scores indicating a higher risk of further bleeding or death) to undergo endoscopy within 6 hours (urgent-endoscopy group) or between 6 and 24 hours (early-endoscopy group) after gastroenterologic consultation. The primary end point was death from any cause within 30 days after randomization. RESULTS: A total of 516 patients were enrolled. The 30-day mortality was 8.9% (23 of 258 patients) in the urgent-endoscopy group and 6.6% (17 of 258) in the early-endoscopy group (difference, 2.3 percentage points; 95% confidence interval [CI], -2.3 to 6.9). Further bleeding within 30 days occurred in 28 patients (10.9%) in the urgent-endoscopy group and in 20 (7.8%) in the early-endoscopy group (difference, 3.1 percentage points; 95% CI, -1.9 to 8.1). Ulcers with active bleeding or visible vessels were found on initial endoscopy in 105 of the 158 patients (66.4%) with peptic ulcers in the urgent-endoscopy group and in 76 of 159 (47.8%) in the early-endoscopy group. Endoscopic hemostatic treatment was administered at initial endoscopy for 155 patients (60.1%) in the urgent-endoscopy group and for 125 (48.4%) in the early-endoscopy group. CONCLUSIONS: In patients with acute upper gastrointestinal bleeding who were at high risk for further bleeding or death, endoscopy performed within 6 hours after gastroenterologic consultation was not associated with lower 30-day mortality than endoscopy performed between 6 and 24 hours after consultation. (Funded by the Health and Medical Fund of the Food and Health Bureau, Government of Hong Kong Special Administrative Region; ClinicalTrials.gov number, NCT01675856.).


Asunto(s)
Endoscopía Gastrointestinal , Várices Esofágicas y Gástricas/diagnóstico , Hemorragia Gastrointestinal/diagnóstico , Úlcera Péptica Hemorrágica/diagnóstico , Enfermedad Aguda , Anciano , Várices Esofágicas y Gástricas/terapia , Femenino , Hemorragia Gastrointestinal/mortalidad , Hemorragia Gastrointestinal/terapia , Hospitalización , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Úlcera Péptica Hemorrágica/mortalidad , Úlcera Péptica Hemorrágica/terapia , Medición de Riesgo , Factores de Tiempo , Tiempo de Tratamiento
15.
Small ; 19(47): e2303779, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37485804

RESUMEN

Urgent calls for reversible cycling performance of silicon (Si) requires an efficient solution to maintain the silicon-electrolyte interface stable. Herein, a conductive biphenyl-polyoxadiazole (bPOD) layer is coated on Si particles to enhance the electrochemical process and prolong the cells lifespan. The conformal bPOD coatings are mixed ionicelectronic conductors, which not only inhibit the infinite growth of solid electrolyte interphase (SEI) but also endow electrodes with outstanding ion/electrons transport capacity. The superior 3D porous structure in the continuous phase allows the bPOD layers to act like a sponge to buffer volume variation, resulting in high structural stability. The in situ polymerized bPOD coating and it-driven thin LiF-rich SEI layer remarkably improve the lithium storage performance of Si anodes, showing a high reversible specific capacity of 1600 mAh g-1 even after 500 cycles at 1 A g-1 along with excellent rate capacity of over 1500 mAh g-1 at 3 A g-1 . It should be noticed that a long cycle life of 800 cycles with 1065 mAh g-1 at 3 A g-1 can also be achieved with a capacity retention of more than 80%. Therefore,  we  believe this unique polymer coating design paves the way for the widespread adoption of next-generation lithium-ion batteries.

16.
BMC Cancer ; 23(1): 191, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849918

RESUMEN

BACKGROUND: Patients with V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) V600E-mutated advanced colorectal cancer (CRC) have a poor prognosis, and treatment options that can improve outcome are still under investigation. The purpose of this study was to discuss the differences of overall survival (OS) and progression-free survival (PFS) between patients with BRAF V600E-mutated advanced CRC who were treated with chemotherapy alone and chemotherapy combined with targeted therapy in advanced first-line therapy. METHODS: Grouping of 61 patients according to first-line treatment regimen (chemotherapy alone/chemotherapy combined with bevacizumab). Kaplan-Meier method and log-rank test were used to compare OS and PFS. Cox proportional hazards regression model was used to measure the risk of first-line medication therapies while correcting for confounding factors that may affect PFS and OS. RESULTS: There was no significant difference in OS between patients treated with chemotherapy alone and those treated with chemotherapy combined with bevacizumab (P = 0.93; HR, 1.027; 95% CI, 0.555-1.901). Likewise, there was no significant difference in PFS between the two groups (P = 0.29; HR, 0.734; 95% CI, 0.413-1.304). Subgroup analysis showed that OS and PFS of different treatment regimens were not significantly different among subgroups. Multivariate analysis suggested that surgical treatment of primary tumor (P = 0.001; HR, 0.326; 95% CI, 0.169-0.631) and presence of liver metastasis (P = 0.009; HR, 2.399; 95% CI, 1.242-4.635) may serve as independent prognostic indicators in patients with BRAF-mutated advanced CRC. Surgical treatment of the primary tumor (P = 0.041; HR, 0.523; 95% CI, 0.280-0.974) was significantly associated with PFS too. CONCLUSION: For patients with BRAF V600E-mutated advanced CRC, chemotherapy alone did not differ significantly in OS and PFS compared with chemotherapy + bevacizumab for advanced first-line therapy. Chemotherapy combined with targeted therapy did not render a survival benefit to these patients, demonstrating that the importance of developing new treatment options for this population.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Animales , Humanos , Ratones , Bevacizumab/uso terapéutico , Protocolos Clínicos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Proteínas Proto-Oncogénicas B-raf/genética , Estudios Retrospectivos
17.
Nat Chem Biol ; 17(8): 896-905, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239127

RESUMEN

Protein ubiquitination shows remarkable topological and functional diversity through the polymerization of ubiquitin via different linkages. Deciphering the cellular ubiquitin code is of central importance to understand the physiology of the cell. However, our understanding of its function is rather limited due to the lack of specific binders as tools to detect K29-linked polyubiquitin. In this study, we screened and characterized a synthetic antigen-binding fragment, termed sAB-K29, that can specifically recognize K29-linked polyubiquitin using chemically synthesized K29-linked diubiquitin. We further determined the crystal structure of this fragment bound to the K29-linked diubiquitin, which revealed the molecular basis of specificity. Using sAB-K29 as a tool, we uncovered that K29-linked ubiquitination is involved in different kinds of cellular proteotoxic stress response as well as cell cycle regulation. In particular, we showed that K29-linked ubiquitination is enriched in the midbody and downregulation of the K29-linked ubiquitination signal arrests cells in G1/S phase.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Humanos , Modelos Moleculares , Transducción de Señal , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
18.
Gastric Cancer ; 26(5): 677-690, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37222910

RESUMEN

BACKGROUND: KIT is frequently mutated in gastrointestinal stromal tumors (GISTs), and the treatment of GISTs largely relies on targeting KIT currently. In this study, we aimed to investigate the role of sprouty RTK signaling antagonist 4 (SPRY4) in GISTs and related mechanisms. METHODS: Ba/F3 cells and GIST-T1 cell were used as cell models, and mice carrying germline KIT/V558A mutation were used as animal model. Gene expression was examined by qRT-PCR and western blot. Protein association was examined by immunoprecipitation. RESULTS: Our study revealed that KIT increased the expression of SPRY4 in GISTs. SPRY4 was found to bind to both wild-type KIT and primary KIT mutants in GISTs, and inhibited KIT expression and activation, leading to decreased cell survival and proliferation mediated by KIT. We also observed that inhibition of SPRY4 expression in KITV558A/WT mice led to increased tumorigenesis of GISTs in vivo. Moreover, our results demonstrated that SPRY4 enhanced the inhibitory effect of imatinib on the activation of primary KIT mutants, as well as on cell proliferation and survival mediated by the primary KIT mutants. However, in contrast to this, SPRY4 did not affect the expression and activation of drug-resistant secondary KIT mutants, nor did it affect the sensitivity of secondary KIT mutants to imatinib. These findings suggested that secondary KIT mutants regulate a different downstream signaling cascade than primary KIT mutants. CONCLUSIONS: Our results suggested that SPRY4 acts as negative feedback of primary KIT mutants in GISTs by inhibiting KIT expression and activation. It can increase the sensitivity of primary KIT mutants to imatinib. In contrast, secondary KIT mutants are resistant to the inhibition of SPRY4.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Neoplasias Gástricas , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Benzamidas/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Mutación , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico
19.
Environ Sci Technol ; 57(4): 1776-1787, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36656265

RESUMEN

The biotransformation behavior and toxicity of organophosphate esters (OPEs) in rice and rhizosphere microbiomes were comprehensively studied by hydroponic experiments. OPEs with lower hydrophobicity were liable to be translocated acropetally, and rhizosphere microbiome could reduce the uptake and translocation of OPEs in rice tissues. New metabolites were successfully identified in rice and rhizosphere microbiome, including hydrolysis, hydroxylated, methylated, and glutathione-, glucuronide-, and sulfate-conjugated products. Rhizobacteria and plants could cooperate to form a complex ecological interaction web for OPE elimination. Furthermore, active members of the rhizosphere microbiome during OPE degradation were revealed and the metagenomic analysis indicated that most of these active populations contained OPE-degrading genes. The results of metabolomics analyses for phytotoxicity assessment implied that several key function metabolic pathways of the rice plant were found perturbed by metabolites, such as diphenyl phosphate and monophenyl phosphate. In addition, the involved metabolism mechanisms, such as the carbohydrate metabolism, amino acid metabolism and synthesis, and nucleotide metabolism in Escherichia coli, were significantly altered after exposure to the products mixture of OPEs generated by rhizosphere microbiome. This work for the first time gives a comprehensive understanding of the entire metabolism of OPEs in plants and associated microbiome, and provides support for the ongoing risk assessment of emerging contaminants and, most critically, their transformation products.


Asunto(s)
Retardadores de Llama , Microbiota , Oryza , Rizosfera , Ésteres/metabolismo , Retardadores de Llama/análisis , Organofosfatos , Biotransformación , Fosfatos , Redes y Vías Metabólicas , Monitoreo del Ambiente , China
20.
Bioorg Med Chem ; 80: 117177, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36701870

RESUMEN

A series of pyrazole-fused oleanolic acid derivatives were designed and synthesized. The modification of these analogues focused on the substituents screening on the pyrazole ring. The cytotoxicity of these compounds and their anti-inflammatory activities via inhibiting interleukin-1ß (IL-1ß) production were evaluated in RAW264.7 cells. Most of the derivatives showed significantly improved potency compared with oleanolic acid. Among them, compound 7n exhibited the most potent anti-inflammatory activity on decreasing IL-1ß production with low cytotoxicity. Moreover, the further study found 7n could inhibit RANKL-induced osteoclast differentiation on bone marrow-derived macrophages (BMMs). These findings may provide a potential direction for the drug development of osteoarthritis.


Asunto(s)
Ácido Oleanólico , Osteoclastos , Macrófagos , Pirazoles/farmacología , Diferenciación Celular , Ligando RANK/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA