Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(20): e2111294119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35537050

RESUMEN

To meet the 1.5 °C target, methane (CH4) from ruminants must be reduced by 11 to 30% by 2030 and 24 to 47% by 2050 compared to 2010 levels. A meta-analysis identified strategies to decrease product-based (PB; CH4 per unit meat or milk) and absolute (ABS) enteric CH4 emissions while maintaining or increasing animal productivity (AP; weight gain or milk yield). Next, the potential of different adoption rates of one PB or one ABS strategy to contribute to the 1.5 °C target was estimated. The database included findings from 430 peer-reviewed studies, which reported 98 mitigation strategies that can be classified into three categories: animal and feed management, diet formulation, and rumen manipulation. A random-effects meta-analysis weighted by inverse variance was carried out. Three PB strategies­namely, increasing feeding level, decreasing grass maturity, and decreasing dietary forage-to-concentrate ratio­decreased CH4 per unit meat or milk by on average 12% and increased AP by a median of 17%. Five ABS strategies­namely CH4 inhibitors, tanniferous forages, electron sinks, oils and fats, and oilseeds­decreased daily methane by on average 21%. Globally, only 100% adoption of the most effective PB and ABS strategies can meet the 1.5 °C target by 2030 but not 2050, because mitigation effects are offset by projected increases in CH4 due to increasing milk and meat demand. Notably, by 2030 and 2050, low- and middle-income countries may not meet their contribution to the 1.5 °C target for this same reason, whereas high-income countries could meet their contributions due to only a minor projected increase in enteric CH4 emissions.


Asunto(s)
Metano , Rumiantes , África , Animales , Países en Desarrollo , Europa (Continente) , Calentamiento Global/prevención & control , Metano/análisis
2.
J Am Chem Soc ; 145(37): 20403-20411, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37534597

RESUMEN

Owing to their remarkable pharmaceutical properties compared to those of noncovalent inhibitors, the development of targeted covalent inhibitors (TCIs) has emerged as a powerful method for cancer treatment. The K-Ras mutant, which is prevalent in multiple cancers, has been confirmed to be a crucial drug target in the treatment of various malignancies. However, although the K-Ras(G12D) mutation is present in up to 33% of K-Ras mutations, no covalent inhibitors targeting K-Ras(G12D) have been developed to date. The relatively weak nucleophilicity of the acquired aspartic acid (12D) residue in K-Ras may be the reason for this. Herein, we present the first compound capable of covalently engaging both K-Ras(G12D) and K-Ras(G12C) mutants. Proteome profiling revealed that this compound effectively conjugates with G12C and G12D residues, modulating the protein functions in situ. These findings offer a unique pathway for the development of novel dual covalent inhibitors.


Asunto(s)
Neoplasias , Humanos , Mutación , Compuestos Epoxi
3.
J Dairy Sci ; 106(7): 4906-4917, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37296048

RESUMEN

The extent to which a nutrition-related disorder such as ketosis alters the ruminal microbiota or whether microbiota composition is related to ketosis and potential associations with host metabolism is unknown. We aimed to evaluate variations occurring in the ruminal microbiota of ketotic and nonketotic cows in the early postpartum period, and how those changes may affect the risk of developing the disease. Data on milk yield, dry matter intake (DMI), body condition score, and blood ß-hydroxybutyrate (BHB) concentrations at 21 d postpartum were used to select 27 cows, which were assigned (n = 9 per group) to a clinical ketotic (CK, 4.10 ± 0.72 mmol BHB/L, DMI 11.61 ± 0.49 kg/d, ruminal pH 7.55 ± 0.07), subclinical ketotic (SK, 1.36 ± 0.12 mmol BHB/L, DMI 15.24 ± 0.34 kg/d, ruminal pH 7.58 ± 0.08), or control (NK, 0.88 ± 0.14 mmol BHB/L, DMI 16.74 ± 0.67/d, ruminal pH 7.61 ± 0.03) group. Cows averaged 3.6 ± 0.5 lactations and a body condition score of 3.11 ± 0.34 at the time of sampling. After blood serum collection for metabolomics analysis (1H nuclear magnetic resonance spectra), 150 mL of ruminal digesta was collected from each cow using an esophageal tube, paired-end (2 × 300 bp) sequencing of isolated DNA from ruminal digesta was performed via Illumina MiSeq, and sequencing data were analyzed using QIIME2 (v 2020.6) to measure the ruminal microbiota composition and relative abundance. Spearman correlation coefficients were used to evaluate relationships between relative abundance of bacterial genera and concentrations of serum metabolites. There were more than 200 genera, with approximately 30 being significant between NK and CK cows. Succinivibrionaceae UCG 1 taxa decreased in CK compared with NK cows. Christensenellaceae (Spearman correlation coefficient = 0.6), Ruminococcaceae (Spearman correlation coefficient = 0.6), Lachnospiraceae (Spearman correlation coefficient = 0.5), and Prevotellaceae (Spearman correlation coefficient = 0.6) genera were more abundant in the CK group and were highly positively correlated with plasma BHB. Metagenomic analysis indicated a high abundance of predicted functions related to metabolism (37.7%), genetic information processing (33.4%), and Brite hierarchies (16.3%) in the CK group. The 2 most important metabolic pathways for butyrate and propionate production were enriched in CK cows, suggesting increased production of acetyl coenzyme A and butyrate and decreased production of propionate. Overall, the combined data suggested that microbial populations may be related to ketosis by affecting short-chain fatty acid metabolism and BHB accumulation even in cows with adequate feed intake in the early postpartum period.


Asunto(s)
Enfermedades de los Bovinos , Cetosis , Femenino , Bovinos , Animales , Lactancia/metabolismo , Propionatos/metabolismo , Dieta/veterinaria , Leche/metabolismo , Cetosis/veterinaria , Cetosis/metabolismo , Butiratos/metabolismo , Ácido 3-Hidroxibutírico , Enfermedades de los Bovinos/metabolismo
4.
J Dairy Sci ; 105(9): 7386-7398, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35879169

RESUMEN

Saccharomyces cerevisiae products (SCP) have the potential to promote the growth and development of the gastrointestinal tract and immunity in young livestock animals. However, the effects of SCP supplementation on calves are inconsistent among the reported studies in the literature. Hence, we performed a meta-analysis to comprehensively assess the effects of SCP on the growth performance, ruminal fermentation parameters, nutrients digestibility, ruminal histological morphology, serum immune response, and fecal pathogen colony counts in calves. We searched the Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure for relevant studies published up to October 1, 2021. After screening against a set of criteria, the data of 36 studies were included in our meta-analysis (2,126 calves in total). We evaluated the quality of the data using sensitivity analysis and assessed publication bias. Our meta-analysis revealed several important findings. First, SCP supplementation increased the ruminal short-chain fatty acid concentration, ruminal papilla height, and fiber digestibility, pointing toward stimulation of the development of the rumen in calves. Second, SCP supplementation increased the serum concentrations of total protein, IgA, and IgG but decreased fecal pathogen colony counts, suggesting that SCP could help calves to promote immunity (especially maintaining circulating concentrations of immunoglobulins in preweaning calves) and resistance to pathogens. Third, a subgroup analysis between preweaning and postweaning calves showed that SCP increased average daily gain and dry matter intake preweaning but not postweaning, suggesting that SCP is better supplemented to preweaning calves to achieve the best results. Forth, based on the dose-response curve, 24 to 25 g/d might be the optimal dose range of SCP supplementation (into starter feed) preweaning to achieve the best overall effect, meanwhile, we need more studies to improve the consistency and accuracy of the dose-response curve prediction. Overall, SCP supplementation improved growth performance, rumen development, and immunocompetence in calves, particularly in preweaning calves.


Asunto(s)
Alimentación Animal , Rumen , Alimentación Animal/análisis , Animales , Peso Corporal , Bovinos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Fermentación , Rumen/metabolismo , Saccharomyces cerevisiae , Destete
5.
Genomics ; 113(3): 1416-1427, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33722656

RESUMEN

Entodinium caudatum is an anaerobic binucleated ciliate representing the most dominant protozoal species in the rumen. However, its biological features are largely unknown due to the inability to establish an axenic culture. In this study, we primally sequenced its macronucleus (MAC) genome to aid the understanding of its metabolism, physiology, ecology. We isolated the MAC of E. caudatum strain MZG-1 and sequenced the MAC genome using Illumina MiSeq, MinION, and PacBio RSII systems. De novo assembly of the MiSeq sequence reads followed with subsequent scaffolding with MinION and PacBio reads resulted in a draft MAC genome about 117 Mbp. A large number of carbohydrate-active enzymes were likely acquired through horizontal gene transfer. About 8.74% of the E. caudatum predicted proteome was predicted as proteases. The MAC genome of E. caudatum will help better understand its important roles in rumen carbohydrate metabolism, and interaction with other members of the rumen microbiome.


Asunto(s)
Cilióforos , Rumen , Anaerobiosis , Animales , Metabolismo de los Hidratos de Carbono , Cilióforos/genética , Cilióforos/metabolismo , Rumen/metabolismo , Análisis de Secuencia de ADN
6.
Ecotoxicol Environ Saf ; 224: 112699, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34454356

RESUMEN

Using animal manure as organic fertilizer to grow fodder crops is causing public health concerns because animal manure is the major reservoir of veterinary antibiotics. In this study, we used a mathematical model to estimate the risk of human exposure to veterinary antibiotics when using swine manure as organic fertilizer to grow alfalfa (Medicago sativa L.). Alfalfa was planted in a greenhouse and fertilized with swine manure spiked with oxytetracycline (OTC, at 0, 150, and 1500 mg/kg of manure), ofloxacin (OFL, at 0, 15, and 150 mg/kg), or sulfamonomethoxine (SMM, at 0, 5, 15 and 150 mg/kg). Alfalfa was harvested at the budding stage and ensiled for 60 days. Results showed that OTC and OFL could be detected in the alfalfa root, stem, and leaf with a concentration ranging from 8.85 to 59.17 µg OTC /kg and from 1.50 to 4.10 µg OFL/kg dry matter, but SMM could only be detected in the root ranging from 29.10 to 63.75 µg/kg dry matter. The ensiling for 60 days decreased the OFL concentration by 68.7% but only slightly decreased the OTC concentration. The maximum daily exposures of humans to OTC and OFL through liquid milk consumption were estimated to be 5.84E-8 and 1.63E-8 µg, respectively, both of which are well below the intake levels of OTC (72 µg) and OFL (54 µg) mandated by the European Union. The results of the present study indicate that using swine manure as organic fertilizer to grow alfalfa poses a limited risk for human exposure to veterinary antibiotics through the consumption of liquid milk.

7.
World J Microbiol Biotechnol ; 37(10): 176, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34519941

RESUMEN

All mucins are highly glycosylated and a key constituent of the mucus layer that is vigilant against pathogens in many organ systems of animals and humans. The viscous layer is organized in bilayers, i.e., an outer layer that is loosely arranged, variable in thickness, home to the commensal microbiota that grows in the complex environment, and an innermost layer that is stratified, non-aspirated, firmly adherent to the epithelial cells and devoid of any microorganisms. The O-glycosylation moiety represents the site of adhesion for pathogens and due to the increase of motility, mucolytic activity, and upregulation of virulence factors, some microorganisms can circumvent the component of the mucus layer and cause disruption in organ homeostasis. A dysbiotic microbiome, defective mucus barrier, and altered immune response often result in various diseases. In this review, paramount emphasis is given to the role played by the bacterial species directly or indirectly involved in mucin degradation, alteration in mucus secretion or its composition or mucin gene expression, which instigates many diseases in the digestive, respiratory, and other organ systems. A systematic view can help better understand the etiology of some complex disorders such as cystic fibrosis, ulcerative colitis and expand our knowledge about mucin degraders to develop new therapeutic approaches to correct ill effects caused by these mucin-dwelling pathogens.


Asunto(s)
Bacterias/metabolismo , Infecciones Bacterianas/microbiología , Membrana Mucosa/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/metabolismo , Disbiosis/metabolismo , Disbiosis/microbiología , Humanos , Microbiota , Mucinas/metabolismo
8.
BMC Microbiol ; 20(1): 29, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32028889

RESUMEN

BACKGROUND: Many recent studies have gravitated towards manipulating the gastrointestinal (GI) microbiome of livestock to improve host nutrition and health using dietary interventions. Few studies, however, have evaluated if inoculation with rumen fluid could effectively reprogram the development of GI microbiota. We hypothesized that inoculation with rumen fluid at an early age could modulate the development of GI microbiota because of its low colonization resistance. RESULTS: In this study, we tested the above hypothesis using young lambs as a model. Young lambs were orally inoculated repeatedly (four times before or twice during gradual weaning) with the rumen fluid collected from adult sheep. The oral inoculation did not significantly affect starter intake, growth performance, or ruminal fermentation. Based on sequencing analysis of 16S rRNA gene amplicons, however, the inoculation (both before and during weaning) affected the assemblage of the rumen microbiota, increasing or enabling some bacterial taxa to colonize the rumen. These included operational taxonomic units (OTUs) belonging to Moryella, Acetitomaculum, Tyzzerella 4, Succiniclasticum, Prevotella 1, Lachnospiraceae, Christensenellaceae R-7 group, Family XIII AD3011, and Bacteroidales S24-7 corresponding to inoculation before weaning; and OTUs belonging to Succiniclasticum, Prevotellaceae UCG-003, Erysipelotrichaceae UCG-004, Prevotella 1, Bacteroidales S24-7 gut group uncultured bacterium, and candidate Family XIII AD3011 corresponding to inoculation during weaning. Compared to the inoculation during weaning, the inoculation before weaning resulted in more co-occurrences of OTUs that were exclusively predominant in the inoculum. However, inoculation during weaning appeared to have more impacts on the colonic microbiota than the inoculation before weaning. Considerable successions in the microbial colonization of the GI tracts accompanied the transition from liquid feed to solid feed during weaning. CONCLUSIONS: Repeated rumen fluid inoculation during early life can modulate the establishment of the microbiota in both the rumen and the colon and co-occurrence of some bacteria. Oral inoculation with rumen microbiota may be a useful approach to redirect the development of the microbiota in both the rumen and colon.


Asunto(s)
Alimentación Animal/microbiología , Bacterias/clasificación , Colon/microbiología , Rumen/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Fermentación , Microbioma Gastrointestinal , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN , Ovinos , Destete
9.
BMC Genomics ; 20(1): 1008, 2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31864285

RESUMEN

BACKGROUND: Rumen ciliates play important roles in rumen function by digesting and fermenting feed and shaping the rumen microbiome. However, they remain poorly understood due to the lack of definitive direct evidence without influence by prokaryotes (including symbionts) in co-cultures or the rumen. In this study, we used RNA-Seq to characterize the transcriptome of Entodinium caudatum, the most predominant and representative rumen ciliate species. RESULTS: Of a large number of transcripts, > 12,000 were annotated to the curated genes in the NR, UniProt, and GO databases. Numerous CAZymes (including lysozyme and chitinase) and peptidases were represented in the transcriptome. This study revealed the ability of E. caudatum to depolymerize starch, hemicellulose, pectin, and the polysaccharides of the bacterial and fungal cell wall, and to degrade proteins. Many signaling pathways, including the ones that have been shown to function in E. caudatum, were represented by many transcripts. The transcriptome also revealed the expression of the genes involved in symbiosis, detoxification of reactive oxygen species, and the electron-transport chain. Overall, the transcriptomic evidence is consistent with some of the previous premises about E. caudatum. However, the identification of specific genes, such as those encoding lysozyme, peptidases, and other enzymes unique to rumen ciliates might be targeted to develop specific and effective inhibitors to improve nitrogen utilization efficiency by controlling the activity and growth of rumen ciliates. The transcriptomic data will also help the assembly and annotation in future genomic sequencing of E. caudatum. CONCLUSION: As the first transcriptome of a single species of rumen ciliates ever sequenced, it provides direct evidence for the substrate spectrum, fermentation pathways, ability to respond to various biotic and abiotic stimuli, and other physiological and ecological features of E. caudatum. The presence and expression of the genes involved in the lysis and degradation of microbial cells highlight the dependence of E. caudatum on engulfment of other rumen microbes for its survival and growth. These genes may be explored in future research to develop targeted control of Entodinium species in the rumen. The transcriptome can also facilitate future genomic studies of E. caudatum and other related rumen ciliates.


Asunto(s)
Alveolados/genética , Alveolados/metabolismo , Perfilación de la Expresión Génica , Alveolados/citología , Alveolados/fisiología , Animales , Metabolismo de los Hidratos de Carbono/genética , Espacio Intracelular/metabolismo , Fagocitosis/genética , ARN Mensajero/genética , RNA-Seq , Transducción de Señal/genética , Simbiosis/genética
10.
Glob Chang Biol ; 24(8): 3368-3389, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29450980

RESUMEN

Enteric methane (CH4 ) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4 production (g/day per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH4 prediction accuracy. The intercontinental database covered Europe (EU), the United States (US), and Australia (AU). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6%, 14.7%, and 19.8% for intercontinental, EU, and United States regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH4 emission conversion factors for specific regions are required to improve CH4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary neutral detergent fiber (NDF) concentration, improve the prediction. For enteric CH4 yield and intensity prediction, information on milk yield and composition is required for better estimation.


Asunto(s)
Agricultura/métodos , Bovinos/fisiología , Metano/análisis , Leche/estadística & datos numéricos , Animales , Australia , Bases de Datos Factuales , Ingestión de Alimentos , Europa (Continente) , Unión Europea , Femenino , Lactancia , Metano/metabolismo , Leche/metabolismo , Modelos Teóricos , Estados Unidos
11.
Curr Microbiol ; 75(11): 1543-1550, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30151556

RESUMEN

This study evaluated the effects of nitrogen source composition and monensin on the populations of proteolytic and amino acid-fermenting bacteria using in vitro enrichment culture. The experiment was designed with a 2 × 2 factorial arrangement: two nitrogen sources, casein (Cas) and tryptone (Try), and two levels of monensin, 0 (C) and 5 µmol/L (M), resulting in four treatments: Cas-C, Cas-M, Try-C, and Try-M. Ruminal fluid collected from three cannulated Holstein dairy cows was used as the inoculum. Each treatment culture was consecutively transferred six times after 24 h of incubation. The results showed that ammonia concentration was lower in Cas than in Try, and it was reduced by monensin addition. In the 6th transfer enrichment cultures, the 16S rRNA gene copy numbers of total bacteria were reduced by monensin but was unaffected by nitrogen sources. Principal component analysis showed that the bacterial communities differed among the treatments. At the genus level, Peptostreptococcus accounted for as much as 41% of the total bacteria in Try-C, but it made up less than 0.02% in the other three treatments. A Pearson correlation analysis showed that the relative abundance of Peptostreptococcus was positively correlated with ammonia concentration. Overall, the results suggest that nitrogen source composition and monensin can affect ruminal ammonia production by modulating the ruminal proteolytic bacterial communities, and some hyper-ammonia-producing bacteria of the genus Peptostreptococcus may be among the main culprits contributing to the high ammonia concentration in the rumen.


Asunto(s)
Aminoácidos/metabolismo , Bacterias/metabolismo , Microbiota , Rumen/microbiología , Amoníaco/metabolismo , Animales , Antifúngicos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bovinos , Técnicas de Cultivo de Célula , ADN Bacteriano/genética , Fermentación , Microbiota/efectos de los fármacos , Monensina/farmacología , Filogenia , Proteolisis , ARN Ribosómico 16S/genética
12.
Asian-Australas J Anim Sci ; 30(11): 1515-1528, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28830126

RESUMEN

The gastrointestinal (GI) tract, including the rumen and the other intestinal segments of cattle, harbors a diverse, complex, and dynamic microbiome that drives feed digestion and fermentation in cattle, determining feed efficiency and output of pollutants. This microbiome also plays an important role in affecting host health. Research has been conducted for more than a century to understand the microbiome and its relationship to feed efficiency and host health. The traditional cultivation-based research elucidated some of the major metabolism, but studies using molecular biology techniques conducted from late 1980's to the late early 2000's greatly expanded our view of the diversity of the rumen and intestinal microbiome of cattle. Recently, metagenomics has been the primary technology to characterize the GI microbiome and its relationship with host nutrition and health. This review addresses the main methods/techniques in current use, the knowledge gained, and some of the challenges that remain. Most of the primers used in quantitative real-time polymerase chain reaction quantification and diversity analysis using metagenomics of ruminal bacteria, archaea, fungi, and protozoa were also compiled.

13.
Mol Plant Microbe Interact ; 29(12): 965-976, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28035839

RESUMEN

Beneficial microorganisms play an important role in enhancing plant health, especially by promoting resistance to plant pathogen infection. The purpose of this study was to gain an understanding of such protection by i) examining the responses of fresh produce (lettuce) to beneficial treatments in their transcriptomes, ii) comparing biological (bacteria, fungi, and oomycete) communities and their diversity when treated with Pseudomonas chlororaphis (beneficial bacterium) in windowfarm hydroponic systems, and iii) identifying the microorganisms in root areas and water. P. chlororaphis treatment was for increasing plant growth and fighting for Pythium ultimum infection. In addition, two more treatments were conducted: i) adding supporting media for increasing bacterial colonizing areas around roots and ii) UV irradiation in water for controlling nuisance biofilm buildup. Changes in gene regulation and expression in lettuce in response to these treatments were investigated. Comparisons of microbial profiles among the treatments and microbial identification were conducted using samples of supporting media (around roots) and water. The results demonstrated that i) P. chlororaphis enhanced lettuce growth, ii) P. chlororaphis-treated lettuce showed dominantly expressed genes for membrane, catalytic activity, cellular process, and metabolic process categories, iii) P. chlororaphis treatment induced genes related to growth promotion and defense pathways, and iv) the microbial community of the root area was affected significantly by P. chlororaphis treatment and microbial diversity in water was significantly changed by UV irradiation. This study provided insight into how beneficial treatments affects the fresh produce growth in root areas and water in a vertical hydroponic system.


Asunto(s)
Bacterias/metabolismo , Biopelículas/crecimiento & desarrollo , Hongos/fisiología , Lactuca/genética , Consorcios Microbianos , Pseudomonas/fisiología , Transcriptoma , Agricultura , Hidroponía , Lactuca/microbiología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Pythium/fisiología
14.
Appl Microbiol Biotechnol ; 100(22): 9757-9771, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27660180

RESUMEN

Mitigation of the methane (CH4) emission from ruminants is needed to decrease the environmental impact of ruminant animal production. Different plant materials and chemicals have been tested, but few are both effective and practical. Medicinal herbs contain biological compounds and antimicrobials that may be effective in lowering the CH4 production. However, few studies have systematically evaluated medicinal herbs for their effect on CH4 production or on the rumen microbiota. In this study, extracts from 100 medicinal herbs were assessed for their ability to decrease CH4 production by rumen microbiota in vitro. The extracts of 12 herbs effectively lowered the CH4 production, with the extract of Perilla frutescens seeds being the most effective. The major components of P. frutescens seed extract were identified, and the effects of the extract on the fermentation characteristics and populations of rumen methanogens, fungi, protozoa, and select bacteria were also assessed. The decreased CH4 production induced by the P. frutescens seed extract was accompanied by an increased abundance of Ruminobacter, Selenomonas, Succinivibrio, Shuttleworthis, Pseudobutyrivbrio, Anaerovibrio, and Roseomonas and a decreased abundance of Methanobrevibacter millerae. The abundance of Pedobacter, Anaeroplasma, Paludibacter, Ruminococcus, and unclassified Lachnospiraceae was positively correlated with the CH4 production, with no effects on volatile fatty acids. This study suggests that medicinal herbs may be used to mitigate the CH4 emission from ruminants.


Asunto(s)
Antiinfecciosos/metabolismo , Metano/metabolismo , Microbiota/efectos de los fármacos , Perilla frutescens/química , Extractos Vegetales/metabolismo , Plantas Medicinales/química , Rumen/microbiología , Animales , Antiinfecciosos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Rumiantes/microbiología , Semillas/química
15.
Biotechnol Bioeng ; 112(2): 280-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25131426

RESUMEN

Anaerobic digestion is a microbiological technology that converts biomass wastes into biogas, achieving both waste treatment and bioenergy production. Accumulation of volatile fatty acids (VFA) during acidogenesis, particularly propionate, often causes upset or failure of digesters. Early detection and monitoring of propionate concentration in digesters allow for just-in-time interventions to prevent irreversible costly process breakdown. In an attempt to develop a rapid method of measuring propionate concentration and bioavailability, we constructed a genetic construct for specific detection of bioavailable propionate. The genetic construct was constructed by transcriptional fusion of the regulatory gene (prpR) and the promoter of the prp operon (PprpB ) of Escherichia coli W3110 with the reporter gene cassette luxCDABE. When the genetic construct was carried on a plasmid and transformed into E. coli (referred to as plasmid-based biosensor), it resulted in stronger emission of luminescence than when it was inserted into the chromosome of E. coli (referred to as chromosome-based biosensor). The biosensor responded specifically to propionate. The luminescence signal increased linearly with increasing concentration of propionate from 1 to 10 mM. The utility of the biosensor was evaluated using samples collected from anaerobic digesters. Once instrumented in future studies, the whole-cell bacterial biosensor developed in this study may provide an alternative technology for real-time detection and measurement of propionate in digesters.


Asunto(s)
Técnicas Biosensibles/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Propionatos/análisis , Reactores Biológicos/microbiología , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Sensibilidad y Especificidad
16.
Appl Microbiol Biotechnol ; 99(20): 8777-92, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26084892

RESUMEN

Temperature-phased anaerobic digestion (TPAD) has gained increasing attention because it provides the flexibility to operate digesters under conditions that enhance overall digester performance. However, research on impact of organic overloading rate (OLR) to microbiota of TPAD systems was limited. In this study, we investigated the composition and successions of the microbiota in both the thermophilic and the mesophilic digesters of a laboratory-scale TPAD system co-digesting dairy manure and waste whey before and during organic overloading. The thermophilic and the mesophilic digesters were operated at 50 and 35 °C, respectively, with a hydraulic retention time (HRT) of 10 days for each digester. High OLR (dairy manure with 5 % total solid and waste whey of ≥60.4 g chemical oxygen demand (COD)/l/day) resulted in decrease in pH and in biogas production and accumulation of volatile fatty acids (VFAs) in the thermophilic digester, while the mesophilic digester remained unchanged except a transient increase in biogas production. Both denaturant gradient gel electrophoresis (DGGE) and Illumina sequencing of 16S ribosomal RNA (rRNA) gene amplicons showed dramatic change in microbiota composition and profound successions of both bacterial and methanogenic communities. During the overloading, Thermotogae was replaced by Proteobacteria, while Methanobrevibacter and archaeon classified as WCHD3-02 grew in predominance at the expense of Methanoculleus in the thermophilic digester, whereas Methanosarcina dominated the methanogenic community, while Methanobacterium and Methanobrevibacter became less predominant in the mesophilic digester. Canonical correspondence analysis (CCA) revealed that digester temperature and pH were the most influential environmental factors that explained much of the variations of the microbiota in this TPAD system when it was overloaded.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biota/efectos de los fármacos , Estiércol/microbiología , Compuestos Orgánicos/metabolismo , Suero Lácteo/química , Suero Lácteo/microbiología , Aerobiosis , Archaea/genética , Bacterias/genética , Biocombustibles , Biotransformación , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Ácidos Grasos Volátiles/análisis , Concentración de Iones de Hidrógeno , Residuos Industriales , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura
17.
Appl Microbiol Biotechnol ; 99(2): 969-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25194839

RESUMEN

The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems.


Asunto(s)
Archaea/clasificación , Bacterias Anaerobias/clasificación , Biocombustibles , Reactores Biológicos/microbiología , Acetatos/metabolismo , Archaea/metabolismo , Bacterias Anaerobias/metabolismo , Biodegradación Ambiental , Fenómenos Químicos , ADN de Archaea/genética , ADN Bacteriano/genética , Calor , Concentración de Iones de Hidrógeno , Metagenómica , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura
18.
BMC Vet Res ; 11: 94, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25889568

RESUMEN

BACKGROUND: Ureolytic activity of rumen bacteria leads to rapid urea conversion to ammonia in the rumen of dairy cows, resulting possible toxicity, excessive ammonia excretion to the environment, and poor nitrogen utilization. The present study investigated immunization of dairy cows against urease in the rumen as an approach to mitigate bacterial ureolytic activity therein. RESULTS: Most alpha subunit of rumen urease (UreC) proteins shared very similar amino acid sequences, which were also highly similar to that of H. pylori. Anti-urease titers in the serum and the saliva of the immunized cows were evaluated following repeated immunization with the UreC of H. pylori as the vaccine. After the fourth booster, the vaccinated cows had a significantly reduced urease activity (by 17%) in the rumen than the control cows that were mock immunized cows. The anti-urease antibody significantly reduced ureolysis and corresponding ammonia formation in rumen fluid in vitro. Western blotting revealed that the H. pylori UreC had high immunological homology with the UreC from rumen bacteria. CONCLUSIONS: Vaccine developed based on UreC of H. pylori can be a useful approach to decrease bacterial ureolysis in the rumen.


Asunto(s)
Bacterias/enzimología , Vacunas Bacterianas/inmunología , Bovinos/microbiología , Rumen/enzimología , Urea/metabolismo , Ureasa/inmunología , Animales , Bacterias/clasificación , Regulación Bacteriana de la Expresión Génica/inmunología , Regulación Enzimológica de la Expresión Génica/inmunología , Inmunización , Ureasa/metabolismo
19.
BMC Microbiol ; 14: 189, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25028050

RESUMEN

BACKGROUND: The microbiota of the mammalian gastrointestinal (GI) tract consists of diverse populations of commensal bacteria that interact with host physiological function. Dysregulating these populations, through exogenous means such as antibiotics or dietary changes, can have adverse consequences on the health of the host. Studies from laboratories such as ours have demonstrated that exposure to psychological stressors disrupts the population profile of intestinal microbiota. To date, such studies have primarily focused on prolonged stressors (repeated across several days) and have assessed fecal bacterial populations. It is not known whether shorter stressors can also impact the microbiota, and whether colonic mucosa-associated populations can also be affected. The mucosa-associated microbiota exist in close proximity to elements of the host immune system and the two are tightly interrelated. Therefore, alterations in these populations should be emphasized. Additionally, stressors can induce differential responses in anxiety-like behavior and corticosterone outputs in variant strains of mice. Thus, whether stressor exposure can have contrasting effects on the colonic microbiota in inbred C57BL/6 mice and outbred CD-1 mice was also examined. RESULTS: In the present study, we used high throughput pyrosequencing to assess the effects of a single 2-hour exposure to a social stressor, called social disruption (SDR), on colonic mucosa-associated microbial profiles of C57BL/6 mice. The data indicate that exposure to the stressor significantly changed the community profile and significantly reduced the relative proportions of two genera and one family of highly abundant intestinal bacteria, including the genus Lactobacillus. This finding was confirmed using a quantitative real-time polymerase chain reaction (qPCR) technique. The use of qPCR also identified mouse strain-specific differences in bacterial abundances. L. reuteri, an immunomodulatory species, was decreased in stressor-exposed CD-1 mice, but not C57BL/6 mice. CONCLUSIONS: These data illustrate that stressor exposure can affect microbial populations, including the lactobacilli, that are closely associated with the colonic mucosa. Because the lactobacilli can have beneficial effects on human health, stressor-induced reductions of their population could have important health implications.


Asunto(s)
Biota , Colon/microbiología , Mucosa Intestinal/microbiología , Estrés Fisiológico , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Appl Microbiol Biotechnol ; 98(2): 897-905, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23624710

RESUMEN

This study investigated the effects of vanillin on methanogenesis and rumen fermentation, and the responses of ruminal protein-degrading bacteria to vanillin (at concentrations of 0, 0.76 and 1.52 g/L), essential oils (clove oil, 1 g/L; origanum oil, 0.50 g/L, and peppermint oil, 1 g/L), and quillaja saponin (at concentration of 0 and 6 g/L) in vitro. Methane production, degradabilities of feed substrate, and ammonia concentration decreased linearly with increasing doses of vanillin. Concentration of total volatile fatty acids also decreased, whereas proportion of butyrate tended to increase linearly with increasing doses of vanillin. Protozoa population decreased, but abundances of Ruminococcus flavefaciens, Prevotella bryantii, Butyrivibrio fibrisolvens, Prevotella ruminicola, Clostridium aminophilum, and Ruminobacter amylophilus increased with increasing doses of vanillin. Origanum and clove oils resulted in lower ammonia concentrations compared to control and peppermint oil. All the tested essential oils decreased abundances of protozoa, Selenomonas ruminantium, R. amylophilus, P. ruminicola and P. bryantii, with the largest decrease resulted from origanum oil followed by clove oil and peppermint oil. The abundances of Megasphaera elsdenii, C. aminophilum, and Clostridium sticklandii were deceased by origanum oil while that of B. fibrisolvens was lowered by both origanum and clove oils. Saponin decreased ammonia concentration and protozoal population, but increased the abundances of S. ruminantium, R. amylophilus, P. ruminicola, and P. bryantii, though the magnitude was small (less than one log unit). The results suggest that reduction of ammonia production by vanillin and saponin may not be caused by direct inhibition of major known proteolytic bacteria, and essential oils can have different inhibitory effects on different proteolytic bacteria, resulting in varying reduction in ammonia production.


Asunto(s)
Benzaldehídos/metabolismo , Biota/efectos de los fármacos , Aceites Volátiles/metabolismo , Proteínas/metabolismo , Rumen/microbiología , Saponinas/metabolismo , Amoníaco/análisis , Animales , Bovinos , Ácidos Grasos Volátiles/análisis , Fermentación/efectos de los fármacos , Metano/metabolismo , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA