Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(3): 4108-4121, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785386

RESUMEN

The optical compensation method is a promising method to compensate the image motion by driving the optical element of the system. However, the tilt motion of the optical element could induce the degradation of the image quality. Based on the Nodal Aberration Theory (NAT), this paper proposes a novel optical image motion compensation design with a secondary tilt-aplanatic two-mirror optical system (STATOS), which achieves the insensitivity on the image quality of the optical system. First, the properties of coma-free pivot point depending on the location of stop at primary mirror or secondary mirror have been analyzed respectively. Then the calculating method about construction parameters in terms of STATOS is developed. Further, the maximum tilt angle of secondary mirror could be solved using NAT under ordered specific restriction. Finally, a prototype is designed with SM-tilting result of MTF value maintain above 0.32 at the cut-off frequency of detector, where the principal distance could remain stable and the changed distortion is better than 0.03%. A test flight has been carried out to prove the desired results and feasibility of STATOS used in an aerial mapping camera.

2.
Sensors (Basel) ; 23(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37765736

RESUMEN

For traditional imaging systems, high imaging quality and system miniaturization are often contradictory. In order to meet the requirements of high imaging quality and system miniaturization, this paper proposes a method to correct the aberration of coherent imaging optical systems. The method is based on the idea of phase recovery and the imaging principle of a coherent imaging system to recover the aberrations at the exit pupil of the system. According to the recovered aberrations, conjugate filters are constructed to correct the image quality in the frequency domain. The imaging quality of the system is improved without changing the original optical path, and the simplicity of the system is guaranteed. To solve the pupil frequency domain aberration more accurately, this paper adopts the dual competition and parallel recombination strategy based on the genetic algorithm and introduces the disaster model. The improved genetic algorithm can effectively restrain the appearance of the "precocity" phenomenon. Finally, the paraxial imaging optical path is simulated and verified by experiments. The results show that, after aberration correction, the image sharpness is improved and the edge information is richer, which verifies the feasibility of the coherent imaging system image quality enhancement method proposed in this paper.

3.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37177622

RESUMEN

Environmental stability technology plays an important role in improving the adaptive range, image resolution and ensuring the stability of geometric parameters of aerial mapping camera. Traditional environmental stability methods directly implement active and passive thermal design to optical systems, which is easy to lead to radial temperature difference of optical components, and cannot eliminate the influence of pressure change. To solve the above problem, a method of environment stability design based on multi-dimensional structure is proposed. Firstly, the aerial mapping camera is designed as imaging system component (core) and sealing cylinder (periphery), and a sealed air insulation sandwich is formed between the two parts to realize the sealing design. A thermal interface is reserved outside the seal to avoid the radial thermal stress caused by direct heating of the optical parts, and a multi-dimensional Environmental stability structure is formed. Secondly, the core and the external thermal environment of aerial mapping camera in complex aviation environment are modeled and theoretically analyzed. Finally, the effectiveness and stability of the multi-dimensional structure method is verified by the thermal simulation and the flight. The results show that the thermal control power is 240 W, the thermal gradient of the optical system is less than 5 °C, the radial temperature difference is less than 0.5 °C. High quality image and ground measurement accuracy are obtained. Compared with tradition thermal control methods, the proposed method has the advantages of accuracy and low power consumption, which can effectively reduce the power consumption and difficulty of the thermal control.

4.
Sensors (Basel) ; 23(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36850352

RESUMEN

The remote sensing imaging requirements of aerial cameras require their optical system to have wide temperature adaptability. Based on the optical passive athermal technology, the expression of thermal power offset of a single lens in the catadioptric optical system is first derived, and then a mathematical model for efficient optimization of materials is established; finally, the mechanical material combination (mirror and housing material) is optimized according to the comprehensive weight of offset with temperature change and the position change of the equivalent single lens, and achieve optimization of the lens material on an athermal map. In order to verify the effectiveness of the method, an example of a catadioptric aerial optical system with a focal length of 350 mm is designed. The results show that in the temperature range of -40 °C to 60 °C, the diffraction-limited MTF of the designed optical system is 0.59 (at 68 lp/mm), the MTF of each field of view is greater than 0.39, and the thermal defocus is less than 0.004 mm, which is within one time of the focal depth, indicating that the imaging quality of the optical system basically does not change with temperature, meeting the stringent application requirements of the aerial camera.

5.
Appl Opt ; 61(17): 5205-5214, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36256203

RESUMEN

Aerial cameras play an important role in obtaining ground information. However, the complex and changeable aviation environment limits its application. Thermal control is vital in improving the environmental adaptability of the camera to obtain high-quality images. Conventional thermal control of aerial cameras is to directly implement active thermal control on the optical system, which is a single layer thermal control method. Such a method cannot isolate the optical system from the external environment. It results in a sharp increase in thermal control power consumption and in temperature gradient, which increases the difficulty of thermal control. Here, we propose a multilayer system-level thermal control approach by partitioning the aerial camera into two parts, i.e., the imaging system and the outline cabin. Two parts are connected by materials with poor thermal conductivity, and an air insulation interlayer is formed in between. Theoretical analysis is carried out to model the internal and external thermal environment of the aerial camera in a complex high-altitude environment. We study passive thermal control of the thermal insulation layer of the outline cabin, the optical window, the imaging optics, the CCD device, and the phase change material, and active thermal control of the thermal convection and heating film. Numerical modeling on the multilayer thermal control of the system is carried out and verified by the thermal equilibrium test and actual field flight test. The total power consumption of the thermal control system is 270 W. High-quality images are obtained when the temperature gradient of the optical lens is less than 5°C and the temperature of the CCD is lower than 30°C. Our technology is simple, accurate, low cost, and easy to implement compared to the conventional thermal control method. It effectively lowers the power consumption and reduces the difficulty of thermal control.

6.
Sensors (Basel) ; 22(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35271049

RESUMEN

High-precision, real-time, and long-range target geo-location is crucial to UAV reconnaissance and target strikes. Traditional geo-location methods are highly dependent on the accuracies of GPS/INS and the target elevation, which restricts the target geo-location accuracy for LRORS. Moreover, due to the limitations of laser range and the common, real time methods of improving the accuracy, such as laser range finders, DEM and geographic reference data are inappropriate for long-range UAVs. To address the above problems, a set of work patterns and a novel geo-location method are proposed in this paper. The proposed method is not restricted by conditions such as the accuracy of GPS/INS, target elevation, and range finding instrumentation. Specifically, three steps are given, to perform as follows: First, calculate the rough geo-location of the target using the traditional method. Then, according to the rough geo-location, reimage the target. Due to errors in GPS/INS and target elevation, there will be a re-projection error between the actual points of the target and the calculated projection ones. Third, a weighted filtering algorithm is proposed to obtain the optimized target geo-location by processing the reprojection error. Repeat the above process until the target geo-location estimation converges on the true value. The geo-location accuracy is improved by the work pattern and the optimization algorithm. The proposed method was verified by simulation and a flight experiment. The results showed that the proposed method can improve the geo-location accuracy by 38.8 times and 22.5 times compared with traditional methods and DEM methods, respectively. The results indicate that our method is efficient and robust, and can achieve high-precision target geo-location, with an easy implementation.

7.
Appl Opt ; 60(5): 1387-1398, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33690583

RESUMEN

In order to meet the accuracy requirements of target geo-location of a wide-area reconnaissance camera, it is necessary to calibrate the extrinsic parameters of the camera. A novel calibration method is proposed for the orientation relationship between the camera coordinate system (CCS) and the frame coordinate system (FCS). First, the calibration between the roll axis of the FCS and the CCS is carried out based on the method of the extended Kalman filter. Second, the calibration between the pitch axis of the FCS and the CCS is deduced based on the least mean square combined with the particle swarm optimization method. Then, the calibration accuracy of the proposed method is quantitatively analyzed by numerical simulation. Finally, a calibration experiment is conducted on verifying the effectiveness of the method.

8.
Sensors (Basel) ; 21(19)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34640762

RESUMEN

In order to enable the aerial photoelectric equipment to realize wide-area reconnaissance and target surveillance at the same time, a dual-band dynamic scan and stare imaging system is proposed in this paper. The imaging system performs scanning and pointing through a two-axis gimbal, compensating the image motion caused by the aircraft and gimbal angular velocity and the aircraft liner velocity using two two-axis fast steering mirrors (FSMs). The composition and working principle of the dynamic scan and stare imaging system, the detailed scheme of the two-axis FSM and the image motion compensation (IMC) algorithm are introduced. Both the structure and the mirror of the FSM adopt aluminum alloys, and the flexible support structure is designed based on four cross-axis flexural hinges. The Root-Mean-Square (RMS) error of the mirror reaches 15.8 nm and the total weight of the FSM assembly is 510 g. The IMC rate equations of the two-axis FSM are established based on the coordinate transformation method. The effectiveness of the FSM and IMC algorithm is verified by the dynamic imaging test in the laboratory and flight test.

9.
Physiol Mol Biol Plants ; 26(2): 219-232, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32158130

RESUMEN

Chilling stress during the growing season could cause a series of changes in wucai (Brassica campestris L.). WS-1 (chilling-tolerant genotype) and Ta2 (chilling-sensitive genotype) were sampled in present study to explore the chilling tolerance mechanisms. Our results indicated that photosynthetic parameters exhibited lower level in Ta2 than in WS-1 under chilling stress. The rapid chlorophyll fluorescence dynamics curve showed that chilling resulted in a greater inactivation of photosystem II reaction center in Ta2. Reactive oxygen species and malondialdehyde content of chloroplast in Ta2 were higher than WS-1. The ascorbate-glutathione cycle in chloroplast of WS-1 played a more crucial role than Ta2, which was confirmed by higher activities of antioxidant enzymes including Ascorbate peroxidase, Glutathione reductase, Monodehydroascorbate reductase and Dehydroascorbate reductase and higher content of AsA and GSH. In addition, the ultrastructure of chloroplasts in Ta2 was more severely damaged. After low temperature stress, the shape of starch granules in Ta2 changed from elliptical to round and the volume became larger than that of WS-1. The thylakoid structure of Ta2 also became dispersed from the original tight arrangement. Combined with our previous study under heat stress, WS-1 can tolerant both chilling stress and heat stress, which was partly due to a stable photosynthetic system and the higher active antioxidant system in plants, in comparison to Ta2.

10.
Materials (Basel) ; 15(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35057392

RESUMEN

The non-linear dynamic behavior of a hybrid air bearing-rotor system is very complicated and requires careful attention when designing to avoid spindle failure, especially under ultra-high speed condition. In this paper, the rotor trajectory of a hybrid air bearing-rotor system is obtained by solving the unsteady Reynolds equation and motion equations simultaneously. The typical non-linear behavior of hybrid air bearing-rotor systems is illustrated with the analysis of the rotor trajectory, the phase angle, time domain vibration and power spectral density. Furthermore, the influences of the rotor mass, external load, rotating speed and unbalanced mass on the non-linear behavior are investigated. Finally, the effect of structure parameters on the rotor trajectory is studied and the phenomenon under ultra-high speed condition is illustrated, which provides some new guidelines on the ultra-high speed air spindle design.

11.
Materials (Basel) ; 15(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268991

RESUMEN

The spiral-grooved structure has been proposed for promoting the load capacity and stiffness of hybrid air journal bearings. In this paper, the dynamic characteristics of spiral-grooved hybrid bearings are first calculated. The stability criteria of the bearings are proposed and analyzed with different groove structure parameters using frequency domain analysis. It is found that the length of the spiral-groove has significant influence on the stability of the spindle system. Finally, the critical speed of the spiral-grooved hybrid bearing and rotor system is analyzed, and an experiment is carried out to validate the proposed model, finding that groove structure can promote the stability of the air bearing systems.

12.
PLoS One ; 17(9): e0274773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36121806

RESUMEN

When aerial cameras get aerial remote sensing images, the defocus will occur because of reasons such as air pressure, temperature and ground elevation changes, resulting in different image sharpness of continual aerial remote sensing images. Nowadays, the rapidly developing feature matching algorithm will rapidly reduce the registration rate between images with different image sharpness. Therefore, in order to enable aerial cameras to get image sharpness parameters according to the locations of aerial image feature points with inconsistent sharpness, this paper proposes a feature matching algorithm between aerial images with different sharpness by using DEM data and multiple constraints. In this paper, the feature matching range is extended according to the modified aerial imaging model and the nonlinear soft margin support vector machine. Then the relative moving speed and its variation of the feature points in the image are obtained by using the extended L-k optical flow, and finally the epipolar geometric constraint is introduced. To locate the feature points is obtained under multiple constraints, there is no need to calculate the feature point descriptors, and some mismatched point pairs are corrected, which improves the matching efficiency and precision. The experimental results show the feature matching precision of this algorithm is more than 90%, and the running time and matching precision can meet various application needs of aerial cameras.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA