Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 604(7905): 266-272, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418636

RESUMEN

Quantum geometric properties of Bloch wave functions in solids, that is, Berry curvature and the quantum metric, are known to significantly influence the ground- and excited-state behaviour of electrons1-5. The bulk photovoltaic effect (BPVE), a nonlinear phenomenon depending on the polarization of excitation light, is largely governed by the quantum geometric properties in optical transitions6-10. Infrared BPVE has yet to be observed in graphene or moiré systems, although exciting strongly correlated phenomena related to quantum geometry have been reported in this emergent platform11-14. Here we report the observation of tunable mid-infrared BPVE at 5 µm and 7.7 µm in twisted double bilayer graphene (TDBG), arising from the moiré-induced strong symmetry breaking and quantum geometric contribution. The photoresponse depends substantially on the polarization state of the excitation light and is highly tunable by external electric fields. This wide tunability in quantum geometric properties enables us to use a convolutional neural network15,16 to achieve full-Stokes polarimetry together with wavelength detection simultaneously, using only one single TDBG device with a subwavelength footprint of merely 3 × 3 µm2. Our work not only reveals the unique role of moiré engineered quantum geometry in tunable nonlinear light-matter interactions but also identifies a pathway for future intelligent sensing technologies in an extremely compact, on-chip manner.


Asunto(s)
Grafito , Electrones , Análisis Espectral
2.
Phys Rev Lett ; 129(17): 177401, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36332259

RESUMEN

Two-dimensional organic-inorganic hybrid perovskites (2DHPs) are natural quantum-well-like materials, in which strong quantum and dielectric confinement effects due to the organic spacers give rise to tightly bound excitons with large binding energy. To examine the mutual interactions between the organic spacer cations and the inorganic charge-residing octahedral framework in 2DHPs, here we perform femtosecond pump-probe spectroscopy by direct vibrational pumping of the organic spacers, followed by a visible-to-ultraviolet probe covering their excitonic resonances. Measurements on prototypical lead-bromide based 2DHP compounds, (BA)_{2}PbBr_{4} and (BA)_{2}(FA)Pb_{2}Br_{7} (BA^{+}=butylammonium; FA^{+}=formamidinium), reveal two distinct regimes of the temporal response. The first regime is dominated by a pump-induced transient expansion of the organic spacer layers that reduces the exciton oscillator strength, whereas the second regime arises from pump-induced lattice heating effects primarily associated with a spectral shift of the exciton energy. In addition, vibrational excitation enhances the biexciton emission, which we attribute to a stronger intralayer exciton confinement as well as vibrationally induced exciton detrapping from defect states. Our study provides fundamental insights regarding the impact of organic spacers on excitons in 2DHPs, as well as the excited-state dynamics and vibrational energy dissipation in these structurally diverse materials.

3.
Nano Lett ; 20(8): 6076-6083, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32692566

RESUMEN

Recently twisted bilayer graphene (t-BLG) has emerged as a strongly correlated physical platform. Besides the apparent significance of band flatness, band topology may be another critical element in t-BLG and yet receives much less attention. Here we report the compelling evidence for nontrivial noninteracting Moiré band topology in t-BLG through a systematic nonlocal transport study and a K-theory examination. The nontrivial topology manifests itself as two pronounced nonlocal responses in the electron and hole superlattice gaps. We show that the nonlocal responses are robust to the twist angle and edge termination, exhibiting a universal scaling law. We elucidate that, although Berry curvature is symmetry-trivialized, two nontrivial Z2 invariants characterize the Moiré Dirac bands, validating the topological origin of the observed nonlocal responses. Our findings not only provide a new perspective for understanding the strongly correlated t-BLG but also suggest a potential strategy to achieve topological metamaterials from trivial vdW materials.

4.
Nano Lett ; 19(3): 1488-1493, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30721622

RESUMEN

Recently rediscovered layered black phosphorus (BP) provides rich opportunities for investigations of device physics and applications. The band gap of BP is widely tunable by its layer number and a vertical electric field, covering a wide electromagnetic spectral range from visible to mid-infrared. Despite much progress in BP optoelectronics, the fundamental photoluminescence (PL) properties of thin-film BP in mid-infrared have rarely been investigated. Here, we report bright PL emission from thin-film BP (with thickness of 4.5 to 46 nm) from 80 to 300 K. The PL measurements indicate a band gap of 0.308 ± 0.003 eV in 46 nm thick BP at 80 K, and it increases monotonically to 0.334 ± 0.003 eV at 300 K. Such an anomalous blueshift agrees with the previous theoretical and photoconductivity spectroscopy results. However, the observed blueshift of 26 meV from 80 to 300 K is about 60% of the previously reported value. Most importantly, we show that the PL emission intensity from thin-film BP is only a few times weaker than that of an indium arsenide (InAs) multiple quantum well (MQW) structure grown by molecular beam epitaxy. Finally, we report the thickness-dependent PL spectra in thin-film BP in mid-infrared regime. Our work reveals the mid-infrared light emission properties of thin-film BP, suggesting its promising future in tunable mid-infrared light emitting and lasing applications.

5.
Nat Mater ; 17(11): 986-992, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150622

RESUMEN

Optical excitation and subsequent decay of graphene plasmons can produce a significant increase in charge-carrier temperature. An efficient method to convert this temperature elevation into electrical signals can enable important mid-infrared applications. However, the modest thermoelectric coefficient and weak temperature dependence of carrier transport in graphene hinder this goal. Here, we demonstrate mid-infrared graphene detectors consisting of arrays of plasmonic resonators interconnected by quasi-one-dimensional nanoribbons. Localized barriers associated with disorder in the nanoribbons produce a dramatic temperature dependence of carrier transport, thus enabling the electrical detection of plasmon decay in the nearby graphene resonators. Our device has a subwavelength footprint of 5 × 5 µm2 and operates at 12.2 µm with an external responsivity of 16 mA W-1 and a low noise-equivalent power of 1.3 nW Hz-1/2 at room temperature. It is fabricated using large-scale graphene and possesses a simple two-terminal geometry, representing an essential step towards the realization of an on-chip graphene mid-infrared detector array.

6.
Nat Mater ; 17(11): 1048, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30202113

RESUMEN

In the version of this Article originally published, the units of the right-hand y axis of Fig. 2a were incorrectly labelled as mS; they should have been µS. Also, the x-axis tick marks of Fig. 3b should have been aligned with Fig. 3a,c. These have now been corrected.

7.
Nano Lett ; 18(5): 3172-3179, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29584948

RESUMEN

Layered black phosphorus (BP) has attracted wide attention for mid-infrared photonics and high-speed electronics, due to its moderate band gap and high carrier mobility. However, its intrinsic band gap of around 0.33 electronvolt limits the operational wavelength range of BP photonic devices based on direct interband transitions to around 3.7 µm. In this work, we demonstrate that black arsenic phosphorus alloy (b-As xP1- x) formed by introducing arsenic into BP can significantly extend the operational wavelength range of photonic devices. The as-fabricated b-As0.83P0.17 photodetector sandwiched within hexagonal boron nitride (hBN) shows peak extrinsic responsivity of 190, 16, and 1.2 mA/W at 3.4, 5.0, and 7.7 µm at room temperature, respectively. Moreover, the intrinsic photoconductive effect dominates the photocurrent generation mechanism due to the preservation of pristine properties of b-As0.83P0.17 by complete hBN encapsulation, and these b-As0.83P0.17 photodetectors exhibit negligible transport hysteresis. The broad and large photoresponsivity within mid-infrared resulting from the intrinsic photoconduction, together with the excellent long-term air stability, makes b-As0.83P0.17 alloy a promising alternative material for mid-infrared applications, such as free-space communication, infrared imaging, and biomedical sensing.

8.
Science ; 379(6637): eade1220, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927029

RESUMEN

Geometry, an ancient yet vibrant branch of mathematics, has important and far-reaching impacts on various disciplines such as art, science, and engineering. Here, we introduce an emerging concept dubbed "geometric deep optical sensing" that is based on a number of recent demonstrations in advanced optical sensing and imaging, in which a reconfigurable sensor (or an array thereof) can directly decipher the rich information of an unknown incident light beam, including its intensity, spectrum, polarization, spatial features, and possibly angular momentum. We present the physical, mathematical, and engineering foundations of this concept, with particular emphases on the roles of classical and quantum geometry and deep neural networks. Furthermore, we discuss the new opportunities that this emerging scheme can enable and the challenges associated with future developments.

9.
Light Sci Appl ; 9: 37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194951

RESUMEN

The coupling of HgTe quantum dots to a gold nanobump plasmonic array can enhance the spontaneous infrared emission by a factor of five and reduce the influence of nonradiative decay channels.

10.
Sci Adv ; 6(7): eaay6134, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32110733

RESUMEN

Thin-film black phosphorus (BP) is an attractive material for mid-infrared optoelectronic applications because of its layered nature and a moderate bandgap of around 300 meV. Previous photoconduction demonstrations show that a vertical electric field can effectively reduce the bandgap of thin-film BP, expanding the device operational wavelength range in mid-infrared. Here, we report the widely tunable mid-infrared light emission from a hexagonal boron nitride (hBN)/BP/hBN heterostructure device. With a moderate displacement field up to 0.48 V/nm, the photoluminescence (PL) peak from a ~20-layer BP flake is continuously tuned from 3.7 to 7.7 µm, spanning 4 µm in mid-infrared. The PL emission remains perfectly linear-polarized along the armchair direction regardless of the bias field. Moreover, together with theoretical analysis, we show that the radiative decay probably dominates over other nonradiative decay channels in the PL experiments. Our results reveal the great potential of thin-film BP in future widely tunable, mid-infrared light-emitting and lasing applications.

11.
ACS Nano ; 12(5): 5003-5010, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29714472

RESUMEN

A high saturation velocity semiconductor is appealing for applications in electronics and optoelectronics. Thin-film black phosphorus (BP), an emerging layered semiconductor, shows a high carrier mobility and strong mid-infrared photoresponse at room temperature. Here, we report the observation of high intrinsic saturation velocity in 7 to 11 nm thick BP for both electrons and holes as a function of charge-carrier density, temperature, and crystalline direction. We distinguish a drift velocity transition point due to the competition between the electron-impurity and electron-phonon scatterings. We further achieve a room-temperature saturation velocity of 1.2 (1.0) × 107 cm s-1 for hole (electron) carriers at a critical electric field of 14 (13) kV cm-1, indicating an intrinsic current-gain cutoff frequency ∼20 GHz·µm for radio frequency applications. Moreover, the current density is as high as 580 µA µm-1 at a low electric field of 10 kV cm-1. Our studies demonstrate that thin-film BP outperforms silicon in terms of saturation velocity and critical field, revealing its great potential in radio-frequency electronics, high-speed mid-infrared photodetectors, and optical modulators.

12.
Adv Mater ; 30(6)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29314276

RESUMEN

Black phosphorus (BP) has recently attracted significant attention due to its exceptional physical properties. Currently, high-quality few-layer and thin-film BP are produced primarily by mechanical exfoliation, limiting their potential in future applications. Here, the synthesis of highly crystalline thin-film BP on 5 mm sapphire substrates by conversion from red to black phosphorus at 700 °C and 1.5 GPa is demonstrated. The synthesized ≈50 nm thick BP thin films are polycrystalline with a crystal domain size ranging from 40 to 70 µm long, as indicated by Raman mapping and infrared extinction spectroscopy. At room temperature, field-effect mobility of the synthesized BP thin film is found to be around 160 cm2 V-1 s-1 along armchair direction and reaches up to about 200 cm2 V-1 s-1 at around 90 K. Moreover, red phosphorus (RP) covered by exfoliated hexagonal boron nitride (hBN) before conversion shows atomically sharp hBN/BP interface and perfectly layered BP after the conversion. This demonstration represents a critical step toward the future realization of large scale, high-quality BP devices and circuits.

13.
Nat Commun ; 8(1): 1672, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29162821

RESUMEN

Lately rediscovered orthorhombic black phosphorus (BP) exhibits promising properties for near- and mid-infrared optoelectronics. Although recent electrical measurements indicate that a vertical electric field can effectively reduce its transport bandgap, the impact of the electric field on light-matter interaction remains unclear. Here we show that a vertical electric field can dynamically extend the photoresponse in a 5 nm-thick BP photodetector from 3.7 to beyond 7.7 µm, leveraging the Stark effect. We further demonstrate that such a widely tunable BP photodetector exhibits a peak extrinsic photo-responsivity of 518, 30, and 2.2 mA W-1 at 3.4, 5, and 7.7 µm, respectively, at 77 K. Furthermore, the extracted photo-carrier lifetime indicates a potential operational speed of 1.3 GHz. Our work not only demonstrates the potential of BP as an alternative mid-infrared material with broad optical tunability but also may enable the compact, integrated on-chip high-speed mid-infrared photodetectors, modulators, and spectrometers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA