Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Immunity ; 48(6): 1233-1244.e6, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29858013

RESUMEN

Shigella is a Gram-negative bacterium that causes bacillary dysentery worldwide. It invades the intestinal epithelium to elicit intense inflammation and tissue damage, yet the underlying mechanisms of its host selectivity and low infectious inoculum remain perplexing. Here, we report that Shigella co-opts human α-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, to enhance its adhesion to and invasion of mucosal tissues. HD5 promoted Shigella infection in vitro in a structure-dependent manner. Shigella, commonly devoid of an effective host-adhesion apparatus, preferentially targeted HD5 to augment its ability to colonize the intestinal epithelium through interactions with multiple bacterial membrane proteins. HD5 exacerbated infectivity and Shigella-induced pathology in a culture of human colorectal tissues and three animal models. Our findings illuminate how Shigella exploits innate immunity by turning HD5 into a virulence factor for infection, unveiling a mechanism of action for this highly proficient human pathogen.


Asunto(s)
Adhesión Bacteriana/fisiología , Disentería Bacilar/inmunología , Interacciones Huésped-Patógeno/fisiología , Shigella/patogenicidad , alfa-Defensinas , Animales , Humanos
2.
PLoS Pathog ; 19(2): e1011200, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36821624

RESUMEN

In the mammalian intestine, flagellar motility can provide microbes competitive advantage, but also threatens the spatial segregation established by the host at the epithelial surface. Unlike microbicidal defensins, previous studies indicated that the protective activities of human α-defensin 6 (HD6), a peptide secreted by Paneth cells of the small intestine, resides in its remarkable ability to bind microbial surface proteins and self-assemble into protective fibers and nets. Given its ability to bind flagellin, we proposed that HD6 might be an effective inhibitor of bacterial motility. Here, we utilized advanced automated live cell fluorescence imaging to assess the effects of HD6 on actively swimming Salmonella enterica in real time. We found that HD6 was able to effectively restrict flagellar motility of individual bacteria. Flagellin-specific antibody, a classic inhibitor of flagellar motility that utilizes a mechanism of agglutination, lost its activity at low bacterial densities, whereas HD6 activity was not diminished. A single amino acid variant of HD6 that was able to bind flagellin, but not self-assemble, lost ability to inhibit flagellar motility. Together, these results suggest a specialized role of HD6 self-assembly into polymers in targeting and restricting flagellar motility.


Asunto(s)
Antiinfecciosos , Células de Paneth , Animales , Humanos , Células de Paneth/metabolismo , Flagelina/metabolismo , Antiinfecciosos/metabolismo , Bacterias/metabolismo , Flagelos/metabolismo , Mamíferos
3.
Int J Cancer ; 154(3): 561-572, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37675956

RESUMEN

Metastatic (as well as tumor) microenvironments contain both cancer-promoting and cancer-restraining factors. The balance between these opposing forces determines the fate of cancer cells that disseminate to secondary organ sites. In search for microenvironmental drivers or inhibitors of metastasis, we identified, in a previous study, the beta subunit of hemoglobin (HBB) as a lung-derived antimetastatic factor. In the present study, exploring mechanisms regulating melanoma brain metastasis, we discovered that brain-derived factors restrain proliferation and induce apoptosis and necrosis of brain-metastasizing melanoma cells. Employing various purification procedures, we identified a heterodimer composed of hemoglobin alpha and beta chains that perform these antimetastatic functions. Neither the alpha nor the beta subunit alone was inhibitory. An alpha/beta chain dimer chemically purified from human hemoglobin inhibited the cell viability of primary melanomas, melanoma brain metastasis (MBM), and breast cancer cell lines. The dimer-induced DNA damage, cell cycle arrest at the SubG1 phase, apoptosis, and significant necrosis in four MBM cell lines. Proteomic analysis of dimer-treated MBM cells revealed that the dimer downregulates the expression of BRD4, GAB2, and IRS2 proteins, playing crucial roles in cancer cell sustainability and progression. Thus, we hypothesize that the hemoglobin dimer functions as a resistance factor against brain-metastasizing cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Melanoma , Humanos , Melanoma/genética , Proteínas Nucleares , Proteómica , Factores de Transcripción , Neoplasias Encefálicas/genética , Hemoglobinas , Antineoplásicos/farmacología , Necrosis , Línea Celular Tumoral , Microambiente Tumoral , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular
4.
J Transl Med ; 22(1): 269, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475767

RESUMEN

BACKGROUND: Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses. METHODS: To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells' survival in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU. RESULTS: Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin and 5FU. However, the use of ARV-1502 effectively restored the drugs' anti-cancer efficacy. CONCLUSIONS: Our findings offer a practical framework for designing and implementing novel personalized anti-cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring the potential for microbiome-based personalized cancer therapies.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Humanos , Cisplatino , Proteína p53 Supresora de Tumor , Fluorouracilo , Bacterias
5.
J Virol ; 95(15): e0056021, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980602

RESUMEN

Currently, there are no approved drugs for the treatment of flavivirus infection. Accordingly, we tested the inhibitory effects of the novel θ-defensin retrocyclin-101 (RC-101) against flavivirus infection and investigated the mechanism underlying the potential inhibitory effects. First, RC-101 robustly inhibited both Japanese encephalitis virus (JEV) and Zika virus (ZIKV) infections. RC-101 exerted inhibitory effects on the entry and replication stages. Results also indicated that the nonstructural protein NS2B-NS3 serine protease might serve as a potential viral target. Furthermore, RC-101 inhibited protease activity at the micromolar level. We also demonstrated that with respect to the glycoprotein E protein of flavivirus, the DE loop of domain III (DIII), which is the receptor-binding domain of the E protein, might serve as another viral target of RC-101. Moreover, a JEV DE mutant exhibited resistance to RC-101, which was associated with deceased binding affinity of RC-101 to DIII. These findings provide a basis for the development of RC-101 as a potential candidate for the treatment of flavivirus infection. IMPORTANCE Retrocyclin is an artificially humanized circular θ-defensin peptide, containing 18 residues, previously reported to possess broad antimicrobial activity. In this study, we found that retrocyclin-101 inhibited flavivirus (ZIKV and JEV) infections. Retrocyclin-101 inhibited NS2B-NS3 serine protease activity, suggesting that the catalytic triad of the protease is the target. Moreover, retrocyclin-101 bound to the DE loop of the E protein of flavivirus, which prevented its entry.


Asunto(s)
Antivirales/farmacología , Encefalitis Japonesa/tratamiento farmacológico , Péptidos/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Infección por el Virus Zika/tratamiento farmacológico , Animales , Chlorocebus aethiops , Cricetinae , Defensinas/química , Virus de la Encefalitis Japonesa (Especie)/crecimiento & desarrollo , Humanos , Dominios Proteicos/genética , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus Zika/crecimiento & desarrollo
6.
Cell Microbiol ; 21(10): e13069, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31218775

RESUMEN

Human neutrophil peptides (HNPs), also known as human myeloid α-defensins degranulated by infiltrating neutrophils at bacterial infection loci, exhibit broad antomicrobial activities against bacteria, fungi, and viruses. We have made a surprising recent finding that Shigella, a highly contagious, yet poorly adhesive enteric pathogen, exploits human α-defensins including HNP1 to enhance its adhesion to and invasion of host epithelial cells. However, the critical molecular determinants responsible for HNP1-enhanced Shigella adhesion and invasion have yet to be investigated. Using cultured epithelial cells and polarised Caco2 cells as an in vitro infection model, we demonstrated that HNP1 promoted Shigella infection in a structure- and sequence-dependent manner, with two bulky hydrophobic residues, Trp26 and Phe28 important for HNP1 self-assembly, being most critical. The functional importance of hydrophobicity for HNP1-enhanced Shigella infection was further verified by substitutions for Trp26 of a series of unnatural amino acids with straight aliphatic side chains of different lengths. Dissection of the Shigella infection process revealed that bacteria-rather than host cells-bound HNP1 contributed most to the enhancement. Further, mutagenesis analysis of bacterial surface components, while precluding the involvement of lipopolysaccharides (LPS) in the interaction with HNP1, identified outer membrane proteins and the Type 3 secretion apparatus as putative binding targets of HNP1 involved in enhanced Shigella adhesion and invasion. Our findings provide molecular and mechanistic insights into the mode of action of HNP1 in promoting Shigella infection, thus showcasing another example of how innate immune factors may serve as a double-edged sword in health and disease.


Asunto(s)
Adhesión Bacteriana , Células Epiteliales/microbiología , Shigella flexneri/patogenicidad , alfa-Defensinas/metabolismo , Aminoácidos/química , Animales , Células CACO-2 , Disentería Bacilar , Células Epiteliales/metabolismo , Cobayas , Células HCT116 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lipopolisacáridos/metabolismo , Microscopía Electrónica de Rastreo , Mutagénesis , Neutrófilos/inmunología , Shigella flexneri/ultraestructura , alfa-Defensinas/química
7.
Infect Immun ; 88(1)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31611271

RESUMEN

Human α-defensins are 3- to 5-kDa disulfide-bridged peptides with a multitude of antimicrobial activities and immunomodulatory functions. Recent studies show that human enteric α-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, aids the highly infectious enteropathogen Shigella in breaching the intestinal epithelium in vitro and in vivo Whether and how HD5 influences Shigella infection of resident macrophages following its invasion of the intestinal epithelium remain poorly understood. Here, we report that HD5 greatly promoted phagocytosis of Shigella by macrophages by targeting the bacteria to enhance bacterium-to-cell contacts in a structure- and sequence-dependent fashion. Subsequent intracellular multiplication of phagocytosed Shigella led to massive necrotic cell death and release of the bacteria. HD5-promoted phagocytosis of Shigella was independent of the status of the type 3 secretion system. Furthermore, HD5 neither inhibited nor enhanced phagosomal escape of Shigella Collectively, these findings confirm a potential pathogenic role of HD5 in Shigella infection of not only epithelial cells but also macrophages, illuminating how an enteropathogen exploits a host protective factor for virulence and infection.


Asunto(s)
Disentería Bacilar/microbiología , Disentería Bacilar/patología , Interacciones Huésped-Patógeno , Shigella/patogenicidad , alfa-Defensinas/metabolismo , Animales , Adhesión Bacteriana , Células Cultivadas , Células Epiteliales/microbiología , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Macrófagos/microbiología , Ratones , Fagocitosis
8.
Biochemistry ; 52(9): 1547-58, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23406372

RESUMEN

Cathelicidins form a family of small host defense peptides distinct from another class of cationic antimicrobial peptides, the defensins. They are expressed as large precursor molecules with a highly conserved pro-domain known as the cathelin-like domain (CLD). CLDs have high degrees of sequence homology to cathelin, a protein isolated from pig leukocytes and belonging to the cystatin family of cysteine protease inhibitors. In this report, we describe for the first time the X-ray crystal structure of the human CLD (hCLD) of the sole human cathelicidin, LL-37. The structure of the hCLD, determined at 1.93 Å resolution, shows the cystatin-like fold and is highly similar to the structure of the CLD of the pig cathelicidin, protegrin-3. We assayed the in vitro antibacterial activities of the hCLD, LL-37, and the precursor form, pro-cathelicidin (also known as hCAP18), and we found that the unprocessed protein inhibited the growth of Gram-negative bacteria with efficiencies comparable to that of the mature peptide, LL-37. In addition, the antibacterial activity of LL-37 was not inhibited by the hCLD intermolecularly, because exogenously added hCLD had no effect on the bactericidal activity of the mature peptide. The hCLD itself lacked antimicrobial function and did not inhibit the cysteine protease, cathepsin L. Our results contrast with previous reports of hCLD activity. A comparative structural analysis between the hCLD and the cysteine protease inhibitor stefin A showed why the hCLD is unable to function as an inhibitor of cysteine proteases. In this respect, the cystatin scaffold represents an ancestral structural platform from which proteins evolved divergently, with some losing inhibitory functions.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Animales , Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Catepsina L/antagonistas & inhibidores , Cristalografía por Rayos X , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Humanos , Modelos Moleculares , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/metabolismo , Porcinos , Catelicidinas
9.
J Biol Chem ; 287(23): 18900-12, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22496447

RESUMEN

The human α-defensins (HNP) are synthesized in vivo as inactive prodefensins, and contain a conserved glycine, Gly(17), which is part of a ß-bulge structure. It had previously been shown that the glycine main chain torsion angles are in a D-configuration, and that d-amino acids but not L-alanine could be substituted at that position to yield correctly folded peptides without the help of a prodomain. In this study, the glycine to L-alanine mutant defensin was synthesized in the form of a prodefensin using native chemical ligation. The ligation product folded correctly and yielded an active peptide upon CNBr cleavage. The L-Ala(17)-HNP1 crystal structure depicted a ß-bulge identical to wild-type HNP1. However, dimerization was perturbed, causing one monomer to tilt with respect to the other in a dimerization model. Inhibitory activity against the anthrax lethal factor showed a 2-fold reduction relative to wild-type HNP1 as measured by the inhibitory concentration IC(50). Self-association was slightly reduced, as detected by surface plasmon resonance measurements. According to the results of the virtual colony count assay, the antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus cereus exhibited a less than 2-fold reduction in virtual lethal dose values. Prodefensins with two other L-amino acid substitutions, Arg and Phe, at the same position did not fold, indicating that only small side chains are tolerable. These results further elucidate the factors governing the region of the ß-bulge structure that includes Gly(17), illuminating why glycine is conserved in all mammalian α-defensins.


Asunto(s)
Antiinfecciosos/química , Glicina/química , Pliegue de Proteína , Multimerización de Proteína , alfa-Defensinas/química , Sustitución de Aminoácidos , Antiinfecciosos/farmacología , Bacterias/crecimiento & desarrollo , Cristalografía por Rayos X , Glicina/genética , Humanos , Mutación Missense , Relación Estructura-Actividad , alfa-Defensinas/genética , alfa-Defensinas/farmacología
10.
J Biol Chem ; 287(12): 8944-53, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22270360

RESUMEN

Human myeloid α-defensins called HNPs play multiple roles in innate host defense. The Trp-26 residue of HNP1 was previously shown to contribute importantly to its ability to kill S. aureus, inhibit anthrax lethal factor (LF), bind gp120 of HIV-1, dimerize, and undergo further self-association. To gain additional insights into the functional significance of dimerization, we compared wild type HNP1 to dimerization-impaired, N-methylated HNP1 monomers and to disulfide-tethered obligate HNP1 dimers. The structural effects of these modifications were confirmed by x-ray crystallographic analyses. Like the previously studied W26A mutation, N-methylation of Ile-20 dramatically reduced the ability of HNP1 to kill Staphylococcus aureus, inhibit LF, and bind gp120. Importantly, this modification had minimal effect on the ability of HNP1 to kill Escherichia coli. The W26A and MeIle-20 mutations impaired defensin activity synergistically. N-terminal covalent tethering rescued the ability of W26A-HNP1 to inhibit LF but failed to restore its defective killing of S. aureus. Surface plasmon resonance studies revealed that Trp-26 mediated the association of monomers and canonical dimers of HNP1 to immobilized HNP1, LF, and gp120, and also indicated a possible mode of tetramerization of HNP1 mediated by Ile-20 and Leu-25. This study demonstrates that dimerization contributes to some but not all of the many and varied activities of HNP1.


Asunto(s)
alfa-Defensinas/química , alfa-Defensinas/inmunología , Cristalografía por Rayos X , Dimerización , Escherichia coli/fisiología , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Humanos , Inmunidad Innata , Conformación Molecular , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , alfa-Defensinas/genética
11.
Int J Cancer ; 133(10): 2296-306, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23649556

RESUMEN

Recent data suggest that the mechanisms determining whether a tumor cell reaching a secondary organ will enter a dormant state, progress toward metastasis, or go through apoptosis are regulated by the microenvironment of the distant organ. In neuroblastoma, 60-70% of children with high-risk disease will ultimately experience relapse due to the presence of micrometastases. The main goal of this study is to evaluate the role of the lung microenvironment in determining the fate of neuroblastoma lung metastases and micrometastases. Utilizing an orthotopic mouse model for human neuroblastoma metastasis, we were able to generate two neuroblastoma cell populations-lung micrometastatic (MicroNB) cells and lung macrometastatic (MacroNB) cells. These two types of cells share the same genetic background, invade the same distant organ, but differ in their ability to create metastasis in the lungs. We hypothesize that factors present in the lung microenvironment inhibit the propagation of MicroNB cells preventing them from forming overt lung metastasis. This study indeed shows that lung-derived factors significantly reduce the viability of MicroNB cells by up regulating the expression of pro-apoptotic genes, inducing cell cycle arrest and decreasing ERK and FAK phosphorylation. Lung-derived factors affected various additional progression-linked cellular characteristics of neuroblastoma cells, such as the expression of stem-cell markers, morphology, and migratory capacity. An insight into the microenvironmental effects governing neuroblastoma recurrence and progression would be of pivotal importance as they could have a therapeutic potential for the treatment of neuroblastoma residual disease.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neuroblastoma/metabolismo , Neuroblastoma/patología , Animales , Apoptosis/genética , Biomarcadores de Tumor/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Supervivencia Celular/genética , Progresión de la Enfermedad , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Neuroblastoma/genética , Neuroblastoma/secundario , Fosforilación/genética , Células Madre/metabolismo , Células Madre/patología , Microambiente Tumoral
12.
Proc Natl Acad Sci U S A ; 107(32): 14321-6, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20660730

RESUMEN

The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53, conferring tumor development and survival. Antagonists targeting the p53-binding domains of MDM2 and MDMX kill tumor cells both in vitro and in vivo by reactivating the p53 pathway, promising a class of antitumor agents for cancer therapy. Aided by native chemical ligation and mirror image phage display, we recently identified a D-peptide inhibitor of the p53-MDM2 interaction termed (D)PMI-alpha (TNWYANLEKLLR) that competes with p53 for MDM2 binding at an affinity of 219 nM. Increased selection stringency resulted in a distinct D-peptide inhibitor termed (D)PMI-gamma (DWWPLAFEALLR) that binds MDM2 at an affinity of 53 nM. Structural studies coupled with mutational analysis verified the mode of action of these D-peptides as MDM2-dependent p53 activators. Despite being resistant to proteolysis, both (D)PMI-alpha and (D)PMI-gamma failed to actively traverse the cell membrane and, when conjugated to a cationic cell-penetrating peptide, were indiscriminately cytotoxic independently of p53 status. When encapsulated in liposomes decorated with an integrin-targeting cyclic-RGD peptide, however, (D)PMI-alpha exerted potent p53-dependent growth inhibitory activity against human glioblastoma in cell cultures and nude mouse xenograft models. Our findings validate D-peptide antagonists of MDM2 as a class of p53 activators for targeted molecular therapy of malignant neoplasms harboring WT p53 and elevated levels of MDM2.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Péptidos/farmacología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma/patología , Humanos , Liposomas , Ratones , Ratones Desnudos , Oligopéptidos , Péptidos/uso terapéutico , Unión Proteica/efectos de los fármacos , Trasplante Heterólogo
13.
J Am Chem Soc ; 134(15): 6855-64, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22444248

RESUMEN

The E3 ubiquitin ligase MDM2 functions as a crucial negative regulator of the p53 tumor suppressor protein by antagonizing p53 transactivation activity and targeting p53 for degradation. Cellular stress activates p53 by alleviating MDM2-mediated functional inhibition, even though the molecular mechanisms of stress-induced p53 activation still remain poorly understood. Two opposing models have been proposed to describe the functional and structural role in p53 activation of Ser17 phosphorylation in the N-terminal "lid" (residues 1-24) of MDM2. Using the native chemical ligation technique, we synthesized the p53-binding domain (1-109)MDM2 and its Ser17-phosphorylated analogue (1-109)MDM2 pS17 as well as (1-109)MDM2 S17D and (25-109)MDM2, and comparatively characterized their interactions with a panel of p53-derived peptide ligands using surface plasmon resonance, fluorescence polarization, and NMR and CD spectroscopic techniques. We found that the lid is partially structured in apo-MDM2 and occludes p53 peptide binding in a ligand size-dependent manner. Binding of (1-109)MDM2 by the (15-29)p53 peptide fully displaces the lid and renders it completely disordered in the peptide-protein complex. Importantly, neither Ser17 phosphorylation nor the phospho-mimetic mutation S17D has any functional impact on p53 peptide binding to MDM2. Although Ser17 phosphorylation or its mutation to Asp contributes marginally to the stability of the lid conformation in apo-MDM2, neither modification stabilizes apo-MDM2 globally or the displaced lid locally. Our findings demonstrate that Ser17 phosphorylation is functionally neutral with respect to p53 binding, suggesting that MDM2 phosphorylation at a single site is unlikely to play a dominant role in stress-induced p53 activation.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Sitios de Unión , Humanos , Fosfoserina/metabolismo , Unión Proteica
14.
Proc Natl Acad Sci U S A ; 106(12): 4665-70, 2009 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-19255450

RESUMEN

The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53--a cellular process initiated by MDM2 and/or MDMX binding to the N-terminal transactivation domain of p53. MDM2 and MDMX in many tumors confer p53 inactivation and tumor survival, and are important molecular targets for anticancer therapy. We screened a duodecimal peptide phage library against site-specifically biotinylated p53-binding domains of human MDM2 and MDMX chemically synthesized via native chemical ligation, and identified several peptide inhibitors of the p53-MDM2/MDMX interactions. The most potent inhibitor (TSFAEYWNLLSP), termed PMI, bound to MDM2 and MDMX at low nanomolar affinities--approximately 2 orders of magnitude stronger than the wild-type p53 peptide of the same length (ETFSDLWKLLPE). We solved the crystal structures of synthetic MDM2 and MDMX, both in complex with PMI, at 1.6 A resolution. Comparative structural analysis identified an extensive, tightened intramolecular H-bonding network in bound PMI that contributed to its conformational stability, thus enhanced binding to the 2 oncogenic proteins. Importantly, the C-terminal residue Pro of PMI induced formation of a hydrophobic cleft in MDMX previously unseen in the structures of p53-bound MDM2 or MDMX. Our findings deciphered the structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX, shedding new light on structure-based rational design of different classes of p53 activators for potential therapeutic use.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Oligopéptidos/farmacología , Péptidos/farmacología , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Oligopéptidos/química , Oligopéptidos/metabolismo , Biblioteca de Péptidos , Péptidos/química , Péptidos/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Relación Estructura-Actividad
15.
Front Microbiol ; 13: 1022704, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386669

RESUMEN

Chaperone proteins are redundant in nature and, to achieve their function, they bind a large repertoire of client proteins. DnaK is a bacterial chaperone protein that recognizes misfolded and aggregated proteins and drives their folding and intracellular trafficking. Some Mycoplasmas are associated with cancers, and we demonstrated that infection with a strain of Mycoplasma fermentans isolated in our lab promoted lymphoma in a mouse model. Its DnaK is expressed intracellularly in infected cells, it interacts with key proteins to hamper essential pathways related to DNA repair and p53 functions and uninfected cells can take-up extracellular DnaK. We profile here for the first time the eukaryotic proteins interacting with DnaK transiently expressed in five cancer cell lines. A total of 520 eukaryotic proteins were isolated by immunoprecipitation and identified by Liquid Chromatography Mass Spectrometry (LC-MS) analysis. Among the cellular DnaK-binding partners, 49 were shared between the five analyzed cell lines, corroborating the specificity of the interaction of DnaK with these proteins. Enrichment analysis revealed multiple RNA biological processes, DNA repair, chromatin remodeling, DNA conformational changes, protein-DNA complex subunit organization, telomere organization and cell cycle as the most significant ontology terms. This is the first study to show that a bacterial chaperone protein interacts with key eukaryotic components thus suggesting DnaK could become a perturbing hub for the functions of important cellular pathways. Given the close interactions between bacteria and host cells in the local microenvironment, these results provide a foundation for future mechanistic studies on how bacteria interfere with essential cellular processes.

16.
J Biol Chem ; 285(21): 16275-85, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20220136

RESUMEN

We performed a comprehensive alanine scan of human alpha-defensin HNP1 and tested the ability of the resulting analogs to kill Staphylococcus aureus, inhibit anthrax lethal factor, and bind human immunodeficiency virus-1 gp120. By far, the most deleterious mutation for all of these functions was W26A. The activities lost by W26A-HNP1 were restored progressively by replacing W26 with non-coded, straight-chain aliphatic amino acids of increasing chain length. The hydrophobicity of residue 26 also correlated with the ability of the analogs to bind immobilized wild type HNP1 and to undergo further self-association. Thus, the hydrophobicity of residue 26 is not only a key determinant of the direct interactions of HNP1 with target molecules, but it also governs the ability of this peptide to form dimers and more complex quaternary structures at micromolar concentrations. Although all defensin peptides are cationic, their amphipathicity is at least as important as their positive charge in enabling them to participate in innate host defense.


Asunto(s)
Multimerización de Proteína , alfa-Defensinas/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Toxinas Bacterianas/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inmunidad Innata/fisiología , Mutación Missense , Estructura Cuaternaria de Proteína , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo , Relación Estructura-Actividad , Triptófano/química , Triptófano/genética , Triptófano/inmunología , Triptófano/metabolismo , alfa-Defensinas/genética , alfa-Defensinas/inmunología , alfa-Defensinas/metabolismo
17.
Sci Rep ; 11(1): 12889, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145348

RESUMEN

Intelectins are ancient carbohydrate binding proteins, spanning chordate evolution and implicated in multiple human diseases. Previous GWAS have linked SNPs in ITLN1 (also known as omentin) with susceptibility to Crohn's disease (CD); however, analysis of possible functional significance of SNPs at this locus is lacking. Using the Ensembl database, pairwise linkage disequilibrium (LD) analyses indicated that several disease-associated SNPs at the ITLN1 locus, including SNPs in CD244 and Ly9, were in LD. The alleles comprising the risk haplotype are the major alleles in European (67%), but minor alleles in African superpopulations. Neither ITLN1 mRNA nor protein abundance in intestinal tissue, which we confirm as goblet-cell derived, was altered in the CD samples overall nor when samples were analyzed according to genotype. Moreover, the missense variant V109D does not influence ITLN1 glycan binding to the glycan ß-D-galactofuranose or protein-protein oligomerization. Taken together, our data are an important step in defining the role(s) of the CD-risk haplotype by determining that risk is unlikely to be due to changes in ITLN1 carbohydrate recognition, protein oligomerization, or expression levels in intestinal mucosa. Our findings suggest that the relationship between the genomic data and disease arises from changes in CD244 or Ly9 biology, differences in ITLN1 expression in other tissues, or an alteration in ITLN1 interaction with other proteins.


Asunto(s)
Citocinas/genética , Tracto Gastrointestinal/metabolismo , Regulación de la Expresión Génica , Variación Genética , Lectinas/genética , Alelos , Enfermedad de Crohn/genética , Citocinas/química , Susceptibilidad a Enfermedades , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Sitios Genéticos , Humanos , Lectinas/química , Especificidad de Órganos/genética
18.
J Biol Chem ; 284(42): 29180-92, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19640840

RESUMEN

Despite the small size and conserved tertiary structure of defensins, little is known at a molecular level about the basis of their functional versatility. For insight into the mechanism(s) of defensin function, we prepared enantiomeric pairs of four human defensins, HNP1, HNP4, HD5, and HBD2, and studied their killing of bacteria, inhibition of anthrax lethal factor, and binding to HIV-1 gp120. Unstructured HNP1, HD5, and HBD3 and several other human alpha- and beta-defensins were also examined. Crystallographic analysis showed a plane of symmetry that related (L)HNP1 and (D)HNP1 to each other. Either d-enantiomerization or linearization significantly impaired the ability of HNP1 and HD5 to kill Staphylococcus aureus but not Escherichia coli. In contrast, (L)HNP4 and (D)HNP4 were equally bactericidal against both bacteria. d-Enantiomers were generally weaker inhibitors or binders of lethal factor and gp120 than their respective native, all-l forms, although activity differences were modest, particularly for HNP4. A strong correlation existed among these different functions. Our data indicate: (a) that HNP1 and HD5 kill E. coli by a process that is mechanistically distinct from their actions that kill S. aureus and (b) that chiral molecular recognition is not a stringent prerequisite for other functions of these defensins, including their ability to inhibit lethal factor and bind gp120 of HIV-1.


Asunto(s)
alfa-Defensinas/química , Alanina/química , Aminobutiratos/química , Animales , Antígenos Bacterianos/química , Toxinas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/química , Cristalografía por Rayos X/métodos , Cisteína/química , Escherichia coli/metabolismo , Humanos , Cinética , Ratones , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/metabolismo , Estereoisomerismo , Resonancia por Plasmón de Superficie
19.
Chem Sci ; 10(5): 1522-1530, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30809370

RESUMEN

Two major pharmacological hurdles severely limit the widespread use of small peptides as therapeutics: poor proteolytic stability and membrane permeability. Importantly, low aqueous solubility also impedes the development of peptides for clinical use. Various elaborate side chain stapling chemistries have been developed for α-helical peptides to circumvent this problem, with considerable success in spite of inevitable limitations. Here we report a novel peptide stapling strategy based on the dithiocarbamate chemistry linking the side chains of residues Lys(i) and Cys(i + 4) of unprotected peptides and apply it to a series of dodecameric peptide antagonists of the p53-inhibitory oncogenic proteins MDM2 and MDMX. Crystallographic studies of peptide-MDM2/MDMX complexes structurally validated the chemoselectivity of the dithiocarbamate staple bridging Lys and Cys at (i, i + 4) positions. One dithiocarbamate-stapled PMI derivative, DTCPMI, showed a 50-fold stronger binding to MDM2 and MDMX than its linear counterpart. Importantly, in contrast to PMI and its linear derivatives, the DTCPMI peptide actively traversed the cell membrane and killed HCT116 tumor cells in vitro by activating the tumor suppressor protein p53. Compared with other known stapling techniques, our solution-based DTC stapling chemistry is simple, cost-effective, regio-specific and environmentally friendly, promising an important new tool for the development of peptide therapeutics with improved pharmacological properties including aqueous solubility, proteolytic stability and membrane permeability.

20.
Biochim Biophys Acta Biomembr ; 1861(4): 835-844, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30658057

RESUMEN

Defensins are a family of cationic antimicrobial peptides of innate immunity with immunomodulatory properties. The prototypic human α-defensins, also known as human neutrophil peptides 1-3 or HNP1-3, are extensively studied for their structure, function and mechanisms of action, yet little is known about HNP4 - the much less abundant "distant cousin" of HNP1-3. Here we report a systematic mutational analysis of HNP4 with respect to its antibacterial activity against E. coli and S. aureus, inhibitory activity against anthrax lethal factor (LF), and binding activity for LF and HIV-1 gp120. Except for nine conserved and structurally important residues (6xCys, 1xArg, 1xGlu and 1xGly), the remaining 24 residues of HNP4 were each individually mutated to Ala. The crystal structures of G23A-HNP4 and T27A-HNP4 were determined, both exhibiting a disulfide-stabilized canonical α-defensin dimer identical to wild-type HNP4. Unlike HNP1-3, HNP4 preferentially killed the Gram-negative bacterium, a property largely attributable to three clustered cationic residues Arg10, Arg11 and Arg15. The cationic cluster was also important for HNP4 killing of S. aureus, inhibition of LF and binding to LF and gp120. However, F26A, while functionally inconsequential for E. coli killing, was far more deleterious than any other mutations. Similarly, N-methylation of Leu20 to destabilize the HNP4 dimer had little effect on E. coli killing, but significantly reduced the ability of HNP4 to kill S. aureus, inhibit LF, and bind to LF and gp120. Our findings unveil the molecular determinants of HNP4 function, completing the atlas of structure and function relationships for all human neutrophil α-defensins.


Asunto(s)
Antibacterianos , Escherichia coli/crecimiento & desarrollo , Mutación , Multimerización de Proteína , Staphylococcus aureus/crecimiento & desarrollo , alfa-Defensinas , Sustitución de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacología , Antígenos Bacterianos/química , Toxinas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/química , Humanos , Relación Estructura-Actividad , alfa-Defensinas/química , alfa-Defensinas/genética , alfa-Defensinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA