Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 104(8): 8947-8958, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33985781

RESUMEN

A group of milk components that has shown potential to be predicted with milk spectra is milk minerals. Milk minerals are important for human health and cow health. Having an inexpensive and fast way to measure milk mineral concentrations would open doors for research, herd management, and selective breeding. The first aim of this study was to predict milk minerals with infrared milk spectra. Additionally, milk minerals were predicted with infrared-predicted fat, protein, and lactose content. The second aim was to perform a genetic analysis on infrared-predicted milk minerals, to identify QTL, and estimate variance components. For training and validating a multibreed prediction model for individual milk minerals, 264 Danish Jersey cows and 254 Danish Holstein cows were used. Partial least square regression prediction models were built for Ca, Cu, Fe, K, Mg, Mn, Na, P, Se, and Zn based on 80% of the cows, selected randomly. Prediction models were externally validated with 8 herds based on the remaining 20% of the cows. The prediction models were applied on a population of approximately 1,400 Danish Holstein cows with 5,600 infrared spectral records and 1,700 Danish Jersey cows with 7,200 infrared spectral records. Cows from this population had 50k imputed genotypes. Prediction accuracy was good for P and Ca, with external R2 ≥ 0.80 and a relative prediction error of 5.4% for P and 6.3% for Ca. Prediction was moderately good for Na with an external R2 of 0.63, and a relative error of 18.8%. Prediction accuracies of milk minerals based on infrared-predicted fat, protein, and lactose content were considerably lower than those based on the infrared milk spectra. This shows that the milk infrared spectrum contains valuable information on milk minerals, which is currently not used. Heritability for infrared-predicted Ca, Na, and P varied from low (0.13) to moderate (0.36). Several QTL for infrared-predicted milk minerals were observed that have been associated with gold standard milk minerals previously. In conclusion, this study has shown infrared milk spectra were good at predicting Ca, Na, and P in milk. Infrared-predicted Ca, Na, and P had low to moderate heritability estimates.


Asunto(s)
Lactancia , Leche , Animales , Bovinos/genética , Dinamarca , Femenino , Lactosa , Minerales
2.
BMC Genet ; 21(1): 9, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005101

RESUMEN

BACKGROUND: Infrared spectral analysis of milk is cheap, fast, and accurate. Infrared light interacts with chemical bonds present inside the milk, which means that Fourier transform infrared milk spectra are a reflection of the chemical composition of milk. Heritability of Fourier transform infrared milk spectra has been analysed previously. Further genetic analysis of Fourier transform infrared milk spectra could give us a better insight in the genes underlying milk composition. Breed influences milk composition, yet not much is known about the effect of breed on Fourier transform infrared milk spectra. Improved understanding of the effect of breed on Fourier transform infrared milk spectra could enhance efficient application of Fourier transform infrared milk spectra. The aim of this study is to perform a genome wide association study on a selection of wavenumbers for Danish Holstein and Danish Jersey. This will improve our understanding of the genetics underlying milk composition in these two dairy cattle breeds. RESULTS: For each breed separately, fifteen wavenumbers were analysed. Overall, more quantitative trait loci were observed for Danish Jersey compared to Danish Holstein. For both breeds, the majority of the wavenumbers was most strongly associated to a genomic region on BTA 14 harbouring DGAT1. Furthermore, for both breeds most quantitative trait loci were observed for wavenumbers that interact with the chemical bond C-O. For Danish Jersey, wavenumbers that interact with C-H were associated to genes that are involved in fatty acid synthesis, such as AGPAT3, AGPAT6, PPARGC1A, SREBF1, and FADS1. For wavenumbers which interact with -OH, associations were observed to genomic regions that have been linked to alpha-lactalbumin. CONCLUSIONS: The current study identified many quantitative trait loci that underlie Fourier transform infrared milk spectra, and thus milk composition. Differences were observed between groups of wavenumbers that interact with different chemical bonds. Both overlapping and different QTL were observed for Danish Holstein and Danish Jersey.


Asunto(s)
Análisis de los Alimentos , Estudio de Asociación del Genoma Completo , Leche/química , Espectroscopía Infrarroja por Transformada de Fourier , Alelos , Animales , Cruzamiento , Bovinos , Fenómenos Químicos , Dinamarca , Genómica , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
3.
J Dairy Sci ; 103(4): 3334-3348, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32008779

RESUMEN

Fourier transform infrared spectral analysis is a cheap and fast method to predict milk composition. A not very well studied milk component is orotic acid. Orotic acid is an intermediate in the biosynthesis pathway of pyrimidine nucleotides and is an indicator for the metabolic cattle disorder deficiency of uridine monophosphate synthase. The function of orotic acid in milk and its effect on calf health, health of humans consuming milk or milk products, manufacturing properties of milk, and its potential as an indicator trait are largely unknown. The aims of this study were to determine if milk orotic acid can be predicted from infrared milk spectra and to perform a large-scale phenotypic and genetic analysis of infrared-predicted milk orotic acid. An infrared prediction model for orotic acid was built using a training population of 292 Danish Holstein and 299 Danish Jersey cows, and a validation population of 381 Danish Holstein cows. Milk orotic acid concentration was determined with nuclear magnetic resonance spectroscopy. For genetic analysis of infrared orotic acid, 3 study populations were used: 3,210 Danish Holstein cows, 3,360 Danish Jersey cows, and 1,349 Dutch Holstein Friesian cows. Using partial least square regression, a prediction model for orotic acid was built with 18 latent variables. The error of the prediction for the infrared model varied from 1.0 to 3.2 mg/L, and the accuracy varied from 0.68 to 0.86. Heritability of infrared orotic acid predicted with the standardized prediction model was 0.18 for Danish Holstein, 0.09 for Danish Jersey, and 0.37 for Dutch Holstein Friesian. We conclude that milk orotic acid can be predicted with moderate to good accuracy based on infrared milk spectra and that infrared-predicted orotic acid is heritable. The availability of a cheap and fast method to predict milk orotic acid opens up possibilities to study the largely unknown functions of milk orotic acid.


Asunto(s)
Bovinos/genética , Leche/química , Ácido Orótico/análisis , Espectroscopía Infrarroja por Transformada de Fourier/veterinaria , Animales , Bovinos/metabolismo , Industria Lechera , Femenino , Análisis de Fourier , Interacción Gen-Ambiente , Pruebas Genéticas , Patrón de Herencia , Lactancia , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética , Modelos Genéticos , Fenotipo
4.
J Dairy Sci ; 102(1): 503-510, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30343907

RESUMEN

Fourier transform infrared milk spectral data are routinely used for milk quality control and have been revealed to be driven by genetics. This study aimed to (1) estimate heritability for 1,060 wavenumbers in the infrared region from 5,008 to 925 cm-1, (2) estimate genomic correlations between wavenumbers with increased heritability, and (3) compare results between Danish Holstein and Danish Jersey cows. For Danish Holstein, 3,275 cows and 19,656 milk records were available. For Danish Jersey, 3,408 cows and 20,228 milk records were available. We used a hierarchical mixed model, with a Bayesian approach. Heritability of individual wavenumbers ranged from 0.00 to 0.31 in Danish Holstein, and from 0.00 to 0.30 in Danish Jersey. Genomic correlation was calculated between 15 selected wavenumbers, and varied from weak to very strong, in both Danish Holstein and Danish Jersey (0.03 to 0.97, and -0.11 to -0.97). Within the 15 selected wavenumbers, a subdivision into 2 groups of wavenumbers was observed, where genomic correlations were negative between groups, and positive within groups. Heritability and genomic correlations were higher in Danish Holstein compared with Danish Jersey, but followed a similar pattern in both breeds. Breed differences were most pronounced in the mid-infrared region that interacts with lactose and the spectral region that interacts with protein. In conclusion, heritability for individual wavenumbers of Fourier transform milk spectra was moderate, and strong genomic correlations were observed between wavenumbers across the spectrum. Heritability and genomic correlations were higher in Danish Holstein, with the strongest breed differences showing in spectral regions interacting with protein or lactose.


Asunto(s)
Bovinos/genética , Leche/química , Animales , Teorema de Bayes , Cruzamiento , Bovinos/metabolismo , Femenino , Análisis de Fourier , Genómica , Lactosa/análisis , Lactosa/metabolismo , Leche/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/veterinaria
5.
Animal ; 17(3): 100717, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36791491

RESUMEN

Knowledge remains limited on genetic variation and genetic correlations for traits in sows and piglets that are reared in an organic or outdoor setting. Here, we estimated genetic variance components for individual piglet weight, litter weight, litter size traits, and number of functional teats in a pig population raised under outdoor organic conditions. Data were collected from the largest organic multiplier farm in Denmark. Individual piglet weight was recorded at birth and on day 10. Number of live and dead piglets were recorded at birth, day 4, and day 11. Mean and total litter weight were calculated based on the individual weight of living piglets at birth and on day 10. The estimated heritability was highest for the number of functional teats (0.49), mean weight of a litter at birth (0.33) and on day 10 (0.25). In contrast, heritability was lowest for litter size traits (0.04-0.08) and piglet weight (0.06-0.07). Maternal heritability was much higher for individual piglet weight than direct heritability. The results showed that selection for higher mean weight results in smaller litters. Also, selection for individual birth weight of piglets results in heavier piglets at 10 days. In conclusion, this study confirmed that there is genetic variation in individual piglet weight, litter traits, and number of functional teats in organically and outdoor-reared pigs.


Asunto(s)
Parto , Embarazo , Animales , Porcinos/genética , Femenino , Tamaño de la Camada/genética , Peso al Nacer/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA