Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(9): 2693-8, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691739

RESUMEN

Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial diseases, which together account for the leading causes of death worldwide. Although the directed treatment of atherosclerotic plaques remains elusive, macrophages are a natural target for new interventions because they are recruited to lipid-rich lesions, actively internalize modified lipids, and convert to foam cells with diseased phenotypes. In this work, we present a nanomedicine platform to counteract plaque development based on two building blocks: first, at the single macrophage level, sugar-based amphiphilic macromolecules (AMs) were designed to competitively block oxidized lipid uptake via scavenger receptors on macrophages; second, for sustained lesion-level intervention, AMs were fabricated into serum-stable core/shell nanoparticles (NPs) to rapidly associate with plaques and inhibit disease progression in vivo. An AM library was designed and fabricated into NP compositions that showed high binding and down-regulation of both MSR1 and CD36 scavenger receptors, yielding minimal accumulation of oxidized lipids. When intravenously administered to a mouse model of cardiovascular disease, these AM NPs showed a pronounced increase in lesion association compared with the control nanoparticles, causing a significant reduction in neointimal hyperplasia, lipid burden, cholesterol clefts, and overall plaque occlusion. Thus, synthetic macromolecules configured as NPs are not only effectively mobilized to lipid-rich lesions but can also be deployed to counteract atheroinflammatory vascular diseases, highlighting the promise of nanomedicines for hyperlipidemic and metabolic syndromes.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Carbohidratos , Macrófagos/metabolismo , Nanopartículas , Placa Aterosclerótica/tratamiento farmacológico , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Antígenos CD36/genética , Antígenos CD36/metabolismo , Humanos , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patología , Lípidos , Macrófagos/patología , Ratones , Ratones Noqueados , Neointima/genética , Neointima/metabolismo , Neointima/patología , Oxidación-Reducción , Placa Aterosclerótica/sangre , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Receptores Depuradores de Clase A/genética , Receptores Depuradores de Clase A/metabolismo
2.
Biomaterials ; 32(32): 8319-27, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21816466

RESUMEN

Activated vascular wall macrophages can rapidly internalize modified lipoproteins and escalate the growth of atherosclerotic plaques. This article proposes a biomaterials-based therapeutic intervention for depletion of non-regulated cholesterol accumulation and inhibition of inflammation of macrophages. Macromolecules with high scavenger receptor (SR)-binding activity were investigated for SR-mediated delivery of agonists to cholesterol-trafficking nuclear liver-X receptors. From a diverse feature space of a family of amphiphilic macromolecules of linear and aromatic mucic acid backbones modified with varied aliphatic chains and conjugated with differentially branched poly(ethylene glycol), a key molecule (carboxyl-terminated, C12-derivatized, linear mucic acid backbone) was selected for its ability to preferentially bind scavenger receptor A (SR-A) as the key target. At a basal level, this macromolecule suppressed the pro-inflammatory signaling of activated THP-1 macrophages while competitively lowering oxLDL uptake in vitro through scavenger receptor SRA-1 targeting. To further deplete intracellular cholesterol, the core macromolecule structure was exploited to solubilize a hydrophobic small molecule agonist for nuclear Liver-X Receptors, which regulate the efflux of intracellular cholesterol. The macromolecule-encapsulated agonist system was found to reduce oxLDL accumulation by 88% in vitro in comparison to controls. in vivo studies were designed to release the macromolecules (with or without encapsulated agonist) to injured carotid arteries within Sprague Dawley rats fed a high fat diet, conditions that yield enhanced cholesterol accumulation and macrophage recruitment. The macromolecules lowered intimal levels of accumulated cholesterol (50% for macromolecule alone; 70% for macromolecule-encapsulated agonist) and inhibited macrophage retention (92% for macromolecule; 96% for macromolecule-encapsulated agonist; 4 days) relative to non-treated controls. Thus, this study highlights the promise of designing bioactive macromolecule therapeutics based on scavenger receptor targeting, for potential management of vascular arterial disease.


Asunto(s)
Aterosclerosis/complicaciones , Aterosclerosis/patología , Colesterol/metabolismo , Inflamación/patología , Sustancias Macromoleculares/química , Macrófagos/patología , Tensoactivos/química , Animales , Aterosclerosis/genética , Regulación de la Expresión Génica , Humanos , Inflamación/complicaciones , Lipoproteínas LDL/metabolismo , Receptores X del Hígado , Activación de Macrófagos , Macrófagos/metabolismo , Masculino , Nanopartículas , Receptores Nucleares Huérfanos/agonistas , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Receptores Depuradores de Clase A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA