Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Mol Genet ; 24(24): 6886-98, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26385636

RESUMEN

RNA dysregulation is a newly recognized disease mechanism in amyotrophic lateral sclerosis (ALS). Here we identify Drosophila fragile X mental retardation protein (dFMRP) as a robust genetic modifier of TDP-43-dependent toxicity in a Drosophila model of ALS. We find that dFMRP overexpression (dFMRP OE) mitigates TDP-43 dependent locomotor defects and reduced lifespan in Drosophila. TDP-43 and FMRP form a complex in flies and human cells. In motor neurons, TDP-43 expression increases the association of dFMRP with stress granules and colocalizes with polyA binding protein in a variant-dependent manner. Furthermore, dFMRP dosage modulates TDP-43 solubility and molecular mobility with overexpression of dFMRP resulting in a significant reduction of TDP-43 in the aggregate fraction. Polysome fractionation experiments indicate that dFMRP OE also relieves the translation inhibition of futsch mRNA, a TDP-43 target mRNA, which regulates neuromuscular synapse architecture. Restoration of futsch translation by dFMRP OE mitigates Futsch-dependent morphological phenotypes at the neuromuscular junction including synaptic size and presence of satellite boutons. Our data suggest a model whereby dFMRP is neuroprotective by remodeling TDP-43 containing RNA granules, reducing aggregation and restoring the translation of specific mRNAs in motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/metabolismo , ARN Mensajero/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Asociadas a Microtúbulos/genética , Unión Neuromuscular/metabolismo , Neuronas/metabolismo , Neurotoxinas/metabolismo , Fenotipo , Proteínas de Unión al ARN/metabolismo , Solubilidad , Translocación Genética
2.
bioRxiv ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39253499

RESUMEN

The G4C2 hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G4C2 hexanucleotide repeats. Despite displaying key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis, the AAV-(G4C2)66 mouse model in this study exhibits negligible neuronal loss, no motor deficits, and functionally unimpaired TAR DNA-binding protein-43 (TDP-43). While our findings indicate and support that this is a robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G4C2) repeat driven DPR pathology, it is not suitable for investigating the development of disease associated neurodegeneration, TDP-43 dysfunction, gliosis, and motor performance. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.

3.
Neurotherapeutics ; 19(4): 1050-1060, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36070178

RESUMEN

The nuclear pore complex (NPC) is a large multimeric structure that is interspersed throughout the membrane of the nucleus and consists of at least 33 protein components. Individual components cooperate within the nuclear pore to facilitate selective passage of materials between the nucleus and cytoplasm while simultaneously performing pore-independent roles throughout the cell. NPC dysfunction is a hallmark of neurodegenerative disorders including Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). NPC components can become mislocalized or altered in expression in neurodegeneration. These alterations in NPC structure are often detrimental to the neuronal function and ultimately lead to neuronal loss. This review highlights the importance of nucleocytoplasmic transport and NPC integrity and how dysfunction of such may contribute to neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Poro Nuclear , Humanos , Poro Nuclear/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Esclerosis Amiotrófica Lateral/metabolismo , Citoplasma/metabolismo , Núcleo Celular/metabolismo
4.
Cell Rep ; 40(3): 111106, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858577

RESUMEN

Nuclear clearance of the RNA-binding protein TDP-43 is a hallmark of neurodegeneration and an important therapeutic target. Our current understanding of TDP-43 nucleocytoplasmic transport does not fully explain its predominantly nuclear localization or mislocalization in disease. Here, we show that TDP-43 exits nuclei by passive diffusion, independent of facilitated mRNA export. RNA polymerase II blockade and RNase treatment induce TDP-43 nuclear efflux, suggesting that nuclear RNAs sequester TDP-43 in nuclei and limit its availability for passive export. Induction of TDP-43 nuclear efflux by short, GU-rich oligomers (presumably by outcompeting TDP-43 binding to endogenous nuclear RNAs), and nuclear retention conferred by splicing inhibition, demonstrate that nuclear TDP-43 localization depends on binding to GU-rich nuclear RNAs. Indeed, RNA-binding domain mutations markedly reduce TDP-43 nuclear localization and abolish transcription blockade-induced nuclear efflux. Thus, the nuclear abundance of GU-RNAs, dictated by the balance of transcription, pre-mRNA processing, and RNA export, regulates TDP-43 nuclear localization.


Asunto(s)
Esclerosis Amiotrófica Lateral , ARN Nuclear , Transporte Activo de Núcleo Celular , Esclerosis Amiotrófica Lateral/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , ARN Nuclear/metabolismo
5.
Front Cell Neurosci ; 15: 708181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349625

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that affects upper and lower motor neurons. Familial ALS accounts for a small subset of cases (<10-15%) and is caused by dominant mutations in one of more than 10 known genes. Multiple genes have been causally or pathologically linked to both ALS and frontotemporal dementia (FTD). Many of these genes encode RNA-binding proteins, so the role of dysregulated RNA metabolism in neurodegeneration is being actively investigated. In addition to defects in RNA metabolism, recent studies provide emerging evidence into how RNA itself can contribute to the degeneration of both motor and cortical neurons. In this review, we discuss the roles of altered RNA metabolism and RNA-mediated toxicity in the context of TARDBP, FUS, and C9ORF72 mutations. Specifically, we focus on recent studies that describe toxic RNA as the potential initiator of disease, disease-associated defects in specific RNA metabolism pathways, as well as how RNA-based approaches can be used as potential therapies. Altogether, we highlight the importance of RNA-based investigations into the molecular progression of ALS, as well as the need for RNA-dependent structural studies of disease-linked RNA-binding proteins to identify clear therapeutic targets.

6.
Front Cell Dev Biol ; 9: 809859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970554

RESUMEN

Stress granule formation is a complex and rapidly evolving process that significantly disrupts cellular metabolism in response to a variety of cellular stressors. Recently, it has become evident that different chemical stressors lead to the formation of compositionally distinct stress granules. However, it is unclear which proteins are required for the formation of stress granules under different conditions. In addition, the effect of various stressors on polyadenylated RNA metabolism remains enigmatic. Here, we demonstrate that G3BP1/2, which are common stress granule components, are not required for the formation of stress granules specifically during osmotic stress induced by sorbitol and related polyols. Furthermore, sorbitol-induced osmotic stress leads to significant depletion of nuclear polyadenylated RNA, a process that we demonstrate is dependent on active mRNA export, as well as cytoplasmic and subnuclear shifts in the presence of many nuclear RNA-binding proteins. We assessed the function of multiple shifted RBPs and found that hnRNP U, but not TDP-43 or hnRNP I, exhibit reduced function following this cytoplasmic shift. Finally, we observe that multiple stress pathways lead to a significant reduction in transcription, providing a possible explanation for our inability to observe loss of TDP-43 or hnRNP I function. Overall, we identify unique outcomes following osmotic stress that provide important insight into the regulation of RNA-binding protein localization and function.

7.
Sci Transl Med ; 13(604)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321318

RESUMEN

Alterations in the components [nucleoporins (Nups)] and function of the nuclear pore complex (NPC) have been implicated as contributors to the pathogenesis of genetic forms of neurodegeneration including C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). We hypothesized that Nup alterations and the consequential loss of NPC function may lie upstream of TDP-43 dysfunction and mislocalization widely observed in ALS, FTD, and related neurodegenerative diseases. Here, we provide evidence that CHMP7, a critical mediator of NPC quality control, is increased in nuclei of C9orf72 and sporadic ALS induced pluripotent stem cell (iPSC)-derived spinal neurons (iPSNs) and postmortem human motor cortex before the emergence of Nup alterations. Inhibiting the nuclear export of CHMP7 triggered Nup reduction and TDP-43 dysfunction and pathology in human neurons. Knockdown of CHMP7 alleviated disease-associated Nup alterations, deficits in Ran GTPase localization, defects in TDP-43-associated mRNA expression, and downstream glutamate-induced neuronal death. Thus, our data support a role for altered CHMP7-mediated Nup homeostasis as a prominent initiating pathological mechanism for familial and sporadic ALS and highlight the potential for CHMP7 as therapeutic target.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas de Unión al ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte , Demencia Frontotemporal/genética , Humanos , Poro Nuclear
8.
Cell Rep ; 34(13): 108925, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789100

RESUMEN

Multiple cellular pathways have been suggested to be altered by the C9orf72 GGGGCC (G4C2) hexanucleotide repeat expansion (HRE), including aspects of RNA regulation such as nonsense-mediated decay (NMD). Here, we investigate the role that overexpression of UPF1, a protein involved in NMD, plays in mitigating neurotoxicity in multiple models of C9orf72 ALS/FTD. First, we show that NMD is not altered in our endogenous induced pluripotent stem cell (iPSC)-derived spinal neuron (iPSN) model of C9orf72 ALS (C9-ALS) or postmortem motor cortex tissue from C9-ALS patients. Unexpectedly, we find that UPF1 overexpression significantly reduces the severity of known neurodegenerative phenotypes without altering NMD function itself. UPF1 overexpression reduces poly(GP) abundance without altering the amount of repeat RNA, providing a potential mechanism by which UPF1 reduces dipeptide repeat (DPR) protein-mediated toxicity. Together, these findings indicate that UPF1 is neuroprotective in the context of C9-ALS, albeit independent of known UPF1-mediated NMD pathways.


Asunto(s)
Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Síndromes de Neurotoxicidad/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Helicasas/metabolismo , Transactivadores/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas , Corteza Motora/patología , Degeneración Nerviosa/patología , Síndromes de Neurotoxicidad/patología , Fenotipo , Cambios Post Mortem , ARN/metabolismo
9.
Neuron ; 107(6): 1124-1140.e11, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32673563

RESUMEN

Through mechanisms that remain poorly defined, defects in nucleocytoplasmic transport and accumulations of specific nuclear-pore-complex-associated proteins have been reported in multiple neurodegenerative diseases, including C9orf72 Amyotrophic Lateral Sclerosis and Frontotemporal Dementia (ALS/FTD). Using super-resolution structured illumination microscopy, we have explored the mechanism by which nucleoporins are altered in nuclei isolated from C9orf72 induced pluripotent stem-cell-derived neurons (iPSNs). Of the 23 nucleoporins evaluated, we observed a reduction in a subset of 8, including key components of the nuclear pore complex scaffold and the transmembrane nucleoporin POM121. Reduction in POM121 appears to initiate a decrease in the expression of seven additional nucleoporins, ultimately affecting the localization of Ran GTPase and subsequent cellular toxicity in C9orf72 iPSNs. Collectively, our data suggest that the expression of expanded C9orf72 ALS/FTD repeat RNA alone affects nuclear POM121 expression in the initiation of a pathological cascade affecting nucleoporin levels within neuronal nuclei and ultimately downstream neuronal survival.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Demencia Frontotemporal/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Complejo Poro Nuclear/genética , Transporte Activo de Núcleo Celular , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/metabolismo , Células Cultivadas , Demencia Frontotemporal/genética , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Glicoproteínas de Membrana/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
10.
Front Cell Neurosci ; 11: 243, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28860970

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease affecting both upper and lower motor neurons. The molecular mechanisms underlying disease pathogenesis remain largely unknown. Multiple genetic loci including genes involved in proteostasis and ribostasis have been linked to ALS providing key insights into the molecular mechanisms underlying disease. In particular, the identification of the RNA binding proteins TDP-43 and fused in sarcoma (FUS) as causative factors of ALS resulted in a paradigm shift centered on the study of RNA dysregulation as a major mechanism of disease. With wild-type TDP-43 pathology being found in ~97% of ALS cases and the identification of disease causing mutations within its sequence, TDP-43 has emerged as a prominent player in ALS. More recently, studies of the newly discovered C9orf72 repeat expansion are lending further support to the notion of defects in RNA metabolism as a key factor underlying ALS. RNA binding proteins are involved in all aspects of RNA metabolism ranging from splicing, transcription, transport, storage into RNA/protein granules, and translation. How these processes are affected by disease-associated mutations is just beginning to be understood. Considerable work has gone into the identification of splicing and transcription defects resulting from mutations in RNA binding proteins associated with disease. More recently, defects in RNA transport and translation have been shown to be involved in the pathomechanism of ALS. A central hypothesis in the field is that disease causing mutations lead to the persistence of RNA/protein complexes known as stress granules. Under times of prolonged cellular stress these granules sequester specific mRNAs preventing them from translation, and are thought to evolve into pathological aggregates. Here we will review recent efforts directed at understanding how altered RNA metabolism contributes to ALS pathogenesis.

11.
Cell Rep ; 21(1): 110-125, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978466

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a synaptopathy accompanied by the presence of cytoplasmic aggregates containing TDP-43, an RNA-binding protein linked to ∼97% of ALS cases. Using a Drosophila model of ALS, we show that TDP-43 overexpression (OE) in motor neurons results in decreased expression of the Hsc70-4 chaperone at the neuromuscular junction (NMJ). Mechanistically, mutant TDP-43 sequesters hsc70-4 mRNA and impairs its translation. Expression of the Hsc70-4 ortholog, HSPA8, is also reduced in primary motor neurons and NMJs of mice expressing mutant TDP-43. Electrophysiology, imaging, and genetic interaction experiments reveal TDP-43-dependent defects in synaptic vesicle endocytosis. These deficits can be partially restored by OE of Hsc70-4, cysteine-string protein (Csp), or dynamin. This suggests that TDP-43 toxicity results in part from impaired activity of the synaptic CSP/Hsc70 chaperone complex impacting dynamin function. Finally, Hsc70-4/HSPA8 expression is also post-transcriptionally reduced in fly and human induced pluripotent stem cell (iPSC) C9orf72 models, suggesting a common disease pathomechanism.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas del Choque Térmico HSC70/genética , ARN Mensajero/genética , Vesículas Sinápticas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Endocitosis , Regulación de la Expresión Génica , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Agregado de Proteínas , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Transducción de Señal , Transmisión Sináptica , Vesículas Sinápticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA