Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur Biophys J ; 53(3): 111-121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38329496

RESUMEN

Sedimentation velocity analytical ultracentrifugation (SV-AUC) has long been an important method for characterization of antibody therapeutics. Recently, SV-AUC has experienced a wave of new interest and usage from the gene and cell therapy industry, where SV-AUC has proven itself to be the "gold standard" analytical approach for determining capsid loading ratios for adeno-associated virus (AAV) and other viral vectors. While other more common approaches have existed in the realm of cGMP-compliant techniques for years, SV-AUC has long been used strictly for characterization, but not for release testing. This manuscript describes the challenges faced in bringing SV-AUC to a cGMP environment and describes a new program, "BASIS", which allows for 21 CFR Part 11-compliant data handling and data analysis using the well-known and frequently cited SEDFIT analysis software.


Asunto(s)
Anticuerpos , Programas Informáticos , Área Bajo la Curva , Ultracentrifugación/métodos
2.
Eur Biophys J ; 52(4-5): 353-366, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37037926

RESUMEN

The recent surge of therapeutic interest in recombinant adeno-associated viral (AAV) vectors for targeted DNA delivery has brought analytical ultracentrifugation (AUC) into the spotlight. A major concern during formulation of AAV therapeutics is purity of the active species (DNA-containing capsid, or "filled capsids"). Insertion of DNA into AAV is not a highly efficient process; thus, a significant amount of empty and partial/intermediate AAV molecules may exist. Recent guidance from the FDA includes limiting the presence of empty AAV capsids and other impurities to reduce immunotoxicity. While chromatographic techniques (SEC, SEC-MALS, AEX) are often used for empty and full capsid quantitation due to the ease of accessibility and familiarity among most biochemists, the resolution and sensitivity attained by sedimentation velocity (SV-AUC) in the formulation buffer and purification buffers is unmatched. Approaches for using SV-AUC to determine the empty-to-full capsid ratio have already been discussed by others; however, in this report, we focus on the importance of characterizing other impurities, such as free DNA, partially filled capsids, and aggregates that are recognized as species of concern for immunotoxicity. We also demonstrate the usefulness of applying multiple analyses (e.g., c(s), g(s*), WDA) in confirming the presence of and determining the hydrodynamic parameters of these various species.


Asunto(s)
Cápside , Dependovirus , Cápside/química , Dependovirus/genética , Vectores Genéticos , Ultracentrifugación , ADN
3.
Biophys J ; 115(8): 1431-1444, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30292393

RESUMEN

The lower critical solution temperature (LCST) of the thermo-responsive engineered elastin-like polypeptide (ELP) biopolymer is being exploited for the thermal targeted delivery of doxorubicin (Dox) to solid tumors. We examine the impact of Dox labeling on the thermodynamic and hydrodynamic behavior of an ELP drug carrier and how Dox influences the liquid-liquid phase separation (LLPS). Turbidity, dynamic light scattering (DLS), and differential scanning calorimetry measurements show that ELP undergoes a cooperative liquid-liquid phase separation from a soluble to insoluble coacervated state that is enhanced by Dox labeling. Circular dichroism measurements show that below the LCST ELP consists of both random coils and temperature-dependent ß-turn structures. Labeling with Dox further enhances ß-turn formation. DLS measurements reveal a significant increase in the hydrodynamic radius of ELP below the LCST consistent with weak self-association. Dox-labeled SynB1-ELP1 (Dox-ELP) has a significant increase in the hydrodynamic radius by DLS measurements that is consistent with stable oligomers and, at high Dox-ELP concentrations, micelle structures. Enhanced association by Dox-ELP is confirmed by sedimentation velocity analytical ultracentrifugation measurements. Both ELP self-association and the ELP inverse phase transition are entropically driven with positive changes in enthalpy and entropy. We show by turbidity and DLS that the ELP phase transition is monophasic, whereas mixtures of ELP and Dox-ELP are biphasic, with Dox-labeled ELP phase changing first and unlabeled ELP partitioning into the coacervate as the temperature is raised. DLS reveals a complex growth in droplet sizes consistent with coalescence and fusion of liquid droplets. Differential scanning calorimetry measurements show a -11 kcal/mol change in enthalpy for Dox-ELP coacervation relative to the unlabeled ELP, consistent with droplet formation being stabilized by favorable enthalpic interactions. We propose that the ELP phase change is initiated by ELP self-association, enhanced by increased Dox-ELP oligomer and micelle formation and stabilized by favorable enthalpic interactions in the liquid droplets.


Asunto(s)
Doxorrubicina/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Elastina/química , Extracción Líquido-Líquido/métodos , Péptidos/administración & dosificación , Transición de Fase , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Péptidos de Penetración Celular/administración & dosificación , Péptidos de Penetración Celular/química , Doxorrubicina/administración & dosificación , Humanos , Hidrodinámica , Neoplasias/tratamiento farmacológico , Péptidos/química , Péptidos/aislamiento & purificación , Temperatura , Termodinámica
4.
Biophys J ; 114(7): 1563-1578, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642027

RESUMEN

Elastin-like proteins (ELPs) are known to undergo liquid-liquid phase separation reversibly above a concentration-dependent transition temperature. Previous studies suggested that, as temperature increases, ELPs experience an increased propensity for type II ß-turns. However, how the ELPs behave below the phase transition temperature itself is still elusive. Here, we investigate the importance of ß-turn formation during the early stages of ELP self-association. We examined the behavior of two ELPs, a 150-repeat construct that had been investigated previously (ELP[V5G3A2-150] as well as a new 40-repeat construct (ELP40) suitable for nuclear magnetic resonance measurements. Structural analysis of ELP40 reveals a disordered conformation, and chemical shifts throughout the sequence are insensitive to changes in temperature over 20°C. However, a low population of ß-turn conformation cannot be ruled out based on chemical shifts alone. To examine the structural consequences of ß-turns in ELPs, a series of structural ensembles of ELP[V5G3A2-150] were generated, incorporating differing amounts of ß-turn bias throughout the chain. To mimic the early stages of the phase change, two monomers were paired, assuming preferential interaction at ß-turn regions. This approach was justified by the observation that buried hydrophobic turns are commonly observed to interact in the Protein Data Bank. After dimerization, the ensemble-averaged hydrodynamic properties were calculated for each degree of ß-turn bias, and the results were compared with analytical ultracentrifugation experiments at various temperatures. We find that the temperature dependence of the sedimentation coefficient (s20,wo) can be reproduced by increasing the ß-turn content in the structural ensemble. This analysis allows us to estimate the presence of ß-turns and weak associations under experimental conditions. Because disordered proteins frequently exhibit weak biases in secondary structure propensity, these experimentally-driven ensemble calculations may complement existing methods for modeling disordered proteins generally.


Asunto(s)
Elastina/química , Modelos Moleculares , Secuencia de Aminoácidos , Hidrodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Método de Montecarlo , Multimerización de Proteína , Estructura Secundaria de Proteína , Solventes/química , Termodinámica
5.
Anal Biochem ; 558: 41-49, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30063889

RESUMEN

In this study, scanning electron microscopy (SEM) was used to observe the interaction between de-solvated SynB1-elastin-like polypeptide (SynB1-ELP) and silica at a temperature above ELP's lower critical solution temperature (LCST). ELP was seen to initially wet the surface of the silica before rearranging to form narrowly distributed spherical particles. After formation, the ELP particles dynamically rearranged to increase and subsequently decrease in size until 24 h at which time they collapsed. SEM and Energy Dispersive X-ray Spectroscopy revealed that the formation of a thin layer of salt from the PBS solution preceded the initial wetting of ELP on silica, which was shown to play a role in the continuous rearrangement of ELP. FT-IR revealed that the salt, in combination with the hydrophilic silica, trapped water that provided a repulsive surface to the hydrophobic ELP and forced the ELP to continuously minimize its surface area until the water evaporated. This behavior shows that ELP's thermo-responsive nature coupled with its hydrophobicity can be used to create ELP particles and surfaces that can reorganize with minimal water present.


Asunto(s)
Elastina/química , Microscopía Electrónica de Rastreo/métodos , Péptidos/química , Dióxido de Silicio/química , Temperatura , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría por Rayos X
6.
ACS Omega ; 5(14): 8403-8413, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32309751

RESUMEN

Previously, we found that elastin-like polypeptide (ELP), when dried above the lower critical solution temperature on top of a hydrophilic fused silica disk, exhibited a dynamic coalescence behavior. The ELP initially wet the silica, but over the next 12 h, dewett the surface and formed aggregates of precise sizes and shapes. Using Fourier-transform infrared (FT-IR) spectroscopy, the present study explores the role of secondary structures present in ELP during this progressive desiccation and their effect on aggregate size. The amide I peak (1600-1700 cm-1) in the ELP's FT-IR spectrum was deconvoluted using the second derivative method into eight subpeaks (1616, 1624, 1635, 1647, 1657, 1666, 1680, 1695 cm-1). These peaks were identified to represent extended strands, ß-turns, 3(10)-helix, polyproline I, and polyproline II using previous studies on ELP and molecules similar in peptide composition. Positive correlations were established between the various subpeaks, water content, and aggregate size to understand the contributions of the secondary structures in particle formation. The positive correlations suggest that type II ß-turns, independent of the water content, contributed to the growth of the aggregates at earlier time points (1-3.5 h). At later time points (6-12 h), the aggregate growth was attributed to the formation of 3(10)-helices that relied on a decrease in water content. Understanding these relationships gives greater control in creating precisely sized aggregates and surface coatings with varying roughness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA