Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(8): e2314914121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346202

RESUMEN

Mavacamten is a FDA-approved small-molecule therapeutic designed to regulate cardiac function at the sarcomere level by selectively but reversibly inhibiting the enzymatic activity of myosin. It shifts myosin toward ordered off states close to the thick filament backbone. It remains elusive whether these myosin heads in the off state(s) can be recruited in response to physiological stimuli when required to boost cardiac output. We show that cardiac myosins stabilized in these off state(s) by mavacamten are recruitable by 1) Ca2+, 2) increased chronotropy [heart rate (HR)], 3) stretch, and 4) ß-adrenergic (ß-AR) stimulation, all known physiological inotropic interventions. At the molecular level, we show that Ca2+ increases myosin ATPase activity by shifting mavacamten-stabilized myosin heads from the inactive super-relaxed state to the active disordered relaxed state. At the myofilament level, both Ca2+ and passive lengthening can shift mavacamten-ordered off myosin heads from positions close to the thick filament backbone to disordered on states closer to the thin filaments. In isolated rat cardiomyocytes, increased stimulation rates enhanced shortening fraction in mavacamten-treated cells. This observation was confirmed in vivo in telemetered rats, where left-ventricular dP/dtmax, an index of inotropy, increased with HR in mavacamten-treated animals. Finally, we show that ß-AR stimulation in vivo increases left-ventricular function and stroke volume in the setting of mavacamten. Our data demonstrate that the mavacamten-promoted off states of myosin in the thick filament are at least partially activable, thus preserving cardiac reserve mechanisms.


Asunto(s)
Miocitos Cardíacos , Miosinas , Uracilo/análogos & derivados , Animales , Ratas , Bencilaminas/farmacología , Contracción Muscular
2.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37090664

RESUMEN

Mavacamten is a novel, FDA-approved, small molecule therapeutic designed to regulate cardiac function by selectively but reversibly inhibiting the enzymatic activity of myosin. It shifts myosin towards ordered off states close to the thick filament backbone. It remains unresolved whether mavacamten permanently sequesters these myosin heads in the off state(s) or whether these heads can be recruited in response to physiological stimuli when required to boost cardiac output. We show that cardiac myosins stabilized in these off state(s) by mavacamten are recruitable by Ca2+, increased heart rate, stretch, and ß-adrenergic (ß-AR) stimulation, all known physiological inotropic effectors. At the molecular level, we show that, in presence of mavacamten, Ca2+ increases myosin ATPase activity by shifting myosin heads from the reserve super-relaxed (SRX) state to the active disordered relaxed (DRX) state. At the myofilament level, both Ca2+ and passive lengthening can shift ordered off myosin heads from positions close to the thick filament backbone to disordered on states closer to the thin filaments in the presence of mavacamten. In isolated rat cardiomyocytes, increased stimulation rates enhanced shortening fraction in mavacamten-treated cells. This observation was confirmed in vivo in telemetered rats, where left-ventricular dP/dtmax, an index of inotropy, increased with heart rate in mavacamten treated animals. Finally, we show that ß-AR stimulation in vivo increases left-ventricular function and stroke volume in the setting of mavacamten. Our data demonstrate that the mavacamten-promoted off states of myosin in the thick filament are activable, at least partially, thus leading to preservation of cardiac reserve mechanisms.

3.
JBMR Plus ; 5(3): e10466, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33778327

RESUMEN

Aging is characterized by systemic declines in tissue and organ functions. Interventions that slow these declines represent promising therapeutics to protect against age-related disease and improve the quality of life. In this study, several interventions associated with lifespan extension in invertebrates or improvement of age-related disease were tested in mouse models to determine if they were effective in slowing tissue aging in a broad spectrum of functional assays. Benzoxazole, which extends the lifespan of Caenorhabditis elegans, slowed age-related femoral bone loss in mice. Rates of change were established for clinically significant parameters in untreated mice, including kyphosis, blood glucose, body composition, activity, metabolic measures, and detailed parameters of skeletal aging in bone. These findings have implications for the study of preclinical physiological aging and therapies targeting aging. Finally, an online application was created that includes the calculated rates of change and that enables power and variance to be calculated for many clinically important metrics of aging with an emphasis on bone. This resource will help in future study designs employing novel interventions in aging mice. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

4.
Aging Cell ; 12(5): 851-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23734717

RESUMEN

Rapamycin has been shown to extend lifespan in numerous model organisms including mice, with the most dramatic longevity effects reported in females. However, little is known about the functional ramifications of this longevity-enhancing paradigm in mammalian tissues. We treated 24-month-old female C57BL/6J mice with rapamycin for 3 months and determined health outcomes via a variety of noninvasive measures of cardiovascular, skeletal, and metabolic health for individual mice. We determined that while rapamycin has mild transient metabolic effects, there are significant benefits to late-life cardiovascular function with a reversal or attenuation of age-related changes in the heart. RNA-seq analysis of cardiac tissue after treatment indicated inflammatory, metabolic, and antihypertrophic expression changes in cardiac tissue as potential mechanisms mediating the functional improvement. Rapamycin treatment also resulted in beneficial behavioral, skeletal, and motor changes in these mice compared with those fed a control diet. From these findings, we propose that late-life rapamycin therapy not only extends the lifespan of mammals, but also confers functional benefits to a number of tissues and mechanistically implicates an improvement in contractile function and antihypertrophic signaling in the aged heart with a reduction in age-related inflammation.


Asunto(s)
Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/fisiopatología , Inmunosupresores/farmacología , Sirolimus/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Animales , Susceptibilidad a Enfermedades , Ecocardiografía , Femenino , Longevidad/efectos de los fármacos , Longevidad/fisiología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA