Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 584-585: 1333-1348, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28104331

RESUMEN

This paper describes a methodology to perform chemical analyses in landfill areas by integrating multisource geomatic data. We used a top-down approach to identify Environmental Point of Interest (EPI) based on very high-resolution satellite data (Pleiades and WorldView 2) and on in situ thermal and photogrammetric surveys. Change detection techniques and geostatistical analysis supported the chemical survey, undertaken using an accumulation chamber and an RIIA, an unmanned ground vehicle developed by CNR IIA, equipped with a multiparameter sensor platform for environmental monitoring. Such an approach improves site characterization, identifying the key environmental points of interest where it is necessary to perform detailed chemical analyses.

2.
Biosens Bioelectron ; 26(5): 2460-5, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21093248

RESUMEN

The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr-Au, 3×3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO(2), NH(3)) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels.


Asunto(s)
Biomimética/métodos , Conductometría/instrumentación , Gases/análisis , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nariz , Polímeros/química , Técnicas Biosensibles/instrumentación , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Gases/química , Humanos , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA