Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurooncol ; 162(1): 69-78, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36853490

RESUMEN

PURPOSE: Intraventricular compartmental radioimmunotherapy (cRIT) with 131-I-omburtamab is a potential therapy for recurrent primary brain tumors that can seed the thecal space. These patients often previously received external beam radiotherapy (EBRT) to a portion or full craniospinal axis (CSI) as part of upfront therapy. Little is known regarding outcomes after re-irradiation as part of multimodality therapy including cRIT. This study evaluates predictors of response, patterns of failure, and radiologic events after cRIT. METHODS: Patients with recurrent medulloblastoma or ependymoma who received 131-I-omburtamab on a prospective clinical trial were included. Extent of disease at cRIT initiation (no evidence of disease [NED] vs measurable disease [MD]) was assessed as associated with progression-free (PFS) and overall survival (OS) by Kaplan-Meier analysis. RESULTS: All 27 patients (20 medulloblastoma, 7 ependymoma) had EBRT preceding cRIT: most (22, 81%) included CSI (median dose 2340 cGy, boost to 5400 cGy). Twelve (44%) also received EBRT at relapse as bridging to cRIT. There were no cases of radionecrosis. At cRIT initiation, 11 (55%) medulloblastoma and 3 (43%) ependymoma patients were NED, associated with improved PFS (p = 0.002) and OS (p = 0.048) in medulloblastoma. Most relapses were multifocal. With medium follow-up of 3.0 years (95% confidence interval, 1.8-7.4), 6 patients remain alive with NED. CONCLUSION: For patients with medulloblastoma, remission at time of cRIT was associated with significantly improved survival outcomes. Relapses are often multifocal, particularly in the setting of measurable disease at cRIT initiation. EBRT is a promising tool to achieve NED status at cRIT initiation, with no cases of radiation necrosis.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Ependimoma , Meduloblastoma , Humanos , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Encefálicas/radioterapia , Neoplasias Cerebelosas/radioterapia , Enfermedad Crónica , Ependimoma/radioterapia , Radioisótopos de Yodo/uso terapéutico , Meduloblastoma/terapia , Recurrencia Local de Neoplasia/radioterapia , Estudios Prospectivos , Dosificación Radioterapéutica
2.
J Nucl Cardiol ; 29(6): 3179-3188, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34993893

RESUMEN

BACKGROUND: I-123 meta-iodobenzylguanidine (MIBG) imaging has long been employed to noninvasively assess the integrity of human norepinephrine transporter-1 and, hence, myocardial sympathetic innervation. Positron-emitting F-18 meta-fluorobenzylguanidine (MFBG) has recently been developed for potentially superior quantitative characterization. We assessed the feasibility of MFBG imaging of myocardial sympathetic innervation. METHODS: 16 patients were imaged with MFBG PET (30-minute dynamic imaging of chest, followed by 3 whole-body acquisitions between 30 minutes and 4-hour post-injection). Blood kinetics were assessed from multiple samples. Pharmacokinetic modeling with reversible 1- and 2-compartment models was performed. Kinetic rate constants were re-calculated from truncated datasets. All patients underwent concurrent MIBG SPECT. RESULTS: MFBG myocardial uptake was rapid and sustained; the mean standardized uptake value (SUV (mean ± standard deviation)) was 5.1 ± 2.2 and 3.4 ± 1.9 at 1 hour and 3-4-hour post-injection, respectively. The mean K1 and distribution volume (VT) were 1.1 ± 0.6 mL/min/g and 34 ± 22 mL/cm3, respectively. Both were reproducible when re-calculated from truncated 1-hour datasets (Intraclass Correlation Coefficient of 0.99 and 0.91, respectively). Spearman's ϱ = 0.86 between MFBG SUV and VT and 0.80 between MFBG PET-derived VT and MIBG SPECT-derived heart-to-mediastinum activity concentration ratio. CONCLUSION: MFBG is a promising PET radiotracer for the assessment of myocardial sympathetic innervation.


Asunto(s)
3-Yodobencilguanidina , Radiofármacos , Humanos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Miocardio , Sistema Nervioso Simpático/diagnóstico por imagen , Corazón/diagnóstico por imagen , Corazón/inervación
3.
Eur J Nucl Med Mol Imaging ; 48(4): 1166-1177, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33047248

RESUMEN

PURPOSE: Radioimmunotherapy (RIT) delivered through the cerebrospinal fluid (CSF) has been shown to be a safe and promising treatment for leptomeningeal metastases. Pharmacokinetic models for intraOmmaya antiGD2 monoclonal antibody 131I-3F8 have been proposed to improve therapeutic effect while minimizing radiation toxicity. In this study, we now apply pharmacokinetic modeling to intraOmmaya 131I-omburtamab (8H9), an antiB7-H3 antibody which has shown promise in RIT of leptomeningeal metastases. METHODS: Serial CSF samples were collected and radioassayed from 61 patients undergoing a total of 177 intraOmmaya administrations of 131I-omburtamab for leptomeningeal malignancy. A two-compartment pharmacokinetic model with 12 differential equations was constructed and fitted to the radioactivity measurements of CSF samples collected from patients. The model was used to improve anti-tumor dose while reducing off-target toxicity. Mathematical endpoints were (a) the area under the concentration curve (AUC) of the tumor-bound antibody, AUC [CIAR(t)], (b) the AUC of the unbound "harmful" antibody, AUC [CIA(t)], and (c) the therapeutic index, AUC [CIAR(t)] ÷ AUC [CIA(t)]. RESULTS: The model fit CSF radioactivity data well (mean R = 96.4%). The median immunoreactivity of 131I-omburtamab matched literature values at 69.1%. Off-target toxicity (AUC [CIA(t)]) was predicted to increase more quickly than AUC [CIAR(t)] as a function of 131I-omburtamab dose, but the balance of therapeutic index and AUC [CIAR(t)] remained favorable over a broad range of administered doses (0.48-1.40 mg or 881-2592 MBq). While antitumor dose and therapeutic index increased with antigen density, the optimal administered dose did not. Dose fractionization into two separate injections increased therapeutic index by 38%, and splitting into 5 injections by 82%. Increasing antibody immunoreactivity to 100% only increased therapeutic index by 17.5%. CONCLUSION: The 2-compartmental pharmacokinetic model when applied to intraOmmaya 131I-omburtamab yielded both intuitive and nonintuitive therapeutic predictions. The potential advantage of further dose fractionization warrants clinical validation. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov , NCT00089245.


Asunto(s)
Radioisótopos de Yodo , Radioinmunoterapia , Anticuerpos Monoclonales de Origen Murino , Humanos , Radioisótopos de Yodo/uso terapéutico , Índice Terapéutico
4.
Bioconjug Chem ; 31(3): 501-506, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31891487

RESUMEN

Clearing agents (CAs) can rapidly remove nonlocalized targeting biomolecules from circulation for hepatic catabolism, thereby enhancing the therapeutic index (TI), especially for blood (marrow), of the subsequently administered radioisotope in any multistep pretargeting strategy. Herein we describe the synthesis and in vivo evaluation of a fully synthetic glycodendrimer-based CA for DOTA-based pretargeted radioimmunotherapy (DOTA-PRIT). The novel dendron-CA consists of a nonradioactive yttrium-DOTA-Bn molecule attached via a linker to a glycodendron displaying 16 terminal α-thio-N-acetylgalactosamine (α-SGalNAc) units (CCA α-16-DOTA-Y3+; molecular weight: 9059 Da). Pretargeting [177Lu]LuDOTA-Bn with CCA α-16-DOTA-Y3+ to GPA33-expressing SW1222 human colorectal xenografts was highly effective, leading to absorbed doses of [177Lu]LuDOTA-Bn for blood, tumor, liver, spleen, and kidneys of 11.7, 468, 9.97, 5.49, and 13.3 cGy/MBq, respectively. Tumor-to-normal tissues absorbed-dose ratios (i.e., TIs) ranged from 40 (e.g., for blood and kidney) to about 550 for stomach.


Asunto(s)
Acetilgalactosamina/química , Dendrímeros/química , Haptenos/metabolismo , Compuestos Heterocíclicos con 1 Anillo/química , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Radioinmunoterapia/métodos , Animales , Biotina/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Humanos , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacocinética , Ratones , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Eur J Nucl Med Mol Imaging ; 47(6): 1446-1457, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31865407

RESUMEN

PURPOSE: Radiographic changes of brain metastases after stereotactic radiosurgery (SRS) can signify tumor recurrence and/or radiation necrosis (RN); however, standard imaging modalities cannot easily distinguish between these two entities. We investigated whether 18F-Fluorocholine uptake in surgical samples of the resected lesions correlates with pathologic evidence of recurrent tumor and PET imaging. METHODS: About 14 patients previously treated with SRS that developed radiographic changes were included. All patients underwent a preoperative 40-min dynamic PET/CT concurrent with 392 ± 11 MBq bolus injection of 18F-Fluorocholine. 18F-Fluorocholine pharmacokinetics were evaluated by standardized uptake value (SUV), graphical analysis (Patlak plot; KiP) and an irreversible two-compartment model (K1, k2, k3, and Ki). 12 out of 14 patients were administered an additional 72 ± 14 MBq injection of 18F-Fluorocholine 95 ± 26 minutes prior to surgical resection. About 113 resected samples from 12 patients were blindly reviewed by a neuropathologist to assess the viable tumor and necrotic content, microvascular proliferation, reactive gliosis, and mono- and polymorphonuclear inflammatory infiltrates. Correlation between these metrics 18F-Fluorocholine SUV was investigated with a linear mixed model. Comparison of survival distributions of two groups of patients (population median split of PET SUVmax) was performed with the log-rank test. RESULTS: Exactly 10 out of 12 patients for which surgical samples were acquired exhibited pathologic recurrence. Strong correlation was observed between SUVmax as measured from a surgically removed sample with highest uptake and by PET (Pearson's r = 0.66). Patients with 18F-Fluorocholine PET SUVmax > 6 experienced poor survival. Surgical samples with viable tumor had higher 18F-fluorocholine uptake (SUV) than those without tumor (4.5 ± 3.7 and 2.6 ± 3.0; p = 0.01). 18F-fluorocholine count data from surgical samples is driven not only by the percentage viable tumor but also by the degree of inflammation and reactive gliosis (p ≤ 0.02; multivariate regression). CONCLUSIONS: 18F-Fluorocholine accumulation is increased in viable tumor; however, inflammation and gliosis may also lead to elevated uptake. Higher 18F-Fluorocholine PET uptake portends worse prognosis. Kinetic analysis of dynamic 18F-Fluorocholine PET imaging supports the adequacy of the simpler static SUV metric.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Colina/análogos & derivados , Humanos , Cinética , Recurrencia Local de Neoplasia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones
6.
Mol Pharm ; 16(7): 3083-3090, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31117485

RESUMEN

A six-transmembrane epithelial antigen of prostate-1 (STEAP1) is a newly identified target in prostate cancer. The use of radio-labeled STEAP1-targeting antibodies with positron emission tomography (PET) may allow for detection of sites of metastatic prostate cancer and may refine patient selection for antigen-directed therapies. This was a prospective study in seven patients with metastatic castration-resistant prostate cancer who had at least one archival biopsy that was STEAP1-positive by immunohistochemistry. Patients received intravenous injections of ∼185 MBq and 10 mg of [89Zr]Zr-DFO-MSTP2109A, a humanized IgG1 monoclonal antibody directed against STEAP1. PET/CT images, blood samples, and whole-body counts were monitored longitudinally in six patients. Here, we report on safety, biodistribution, pharmacokinetics, dose estimates to normal tissues, and initial tumor targeting for this group of patients. There was no significant acute or subacute toxicity. Favorable biodistribution and enhanced lesion uptake (in both bone and soft tissue) were observed on imaging using a mass of 10 mg of DFO-MSTP2109A. The best lesion discrimination was seen at the latest imaging time, a median of 6 days postadministration. Pharmacokinetics showed a median serum T1/2 ß of 198 h, volume of central compartment of 3.54 L (similar to plasma volume), and clearance of 19.7 mL/h. The median biologic T1/2 for whole-body retention was 469 h. The highest mean absorbed doses to normal organs (mGy/MBq) were 1.18, 1.11, 0.78, 0.73, and 0.71 for liver, heart wall, lung, kidney, and spleen, respectively. Excellent targeting of metastatic prostate sites in both bone and soft tissue was observed, with an optimal imaging time of 6 days postadministration. The liver and heart were the normal organs that experienced the highest absorbed doses. The pharmacokinetics were similar to other antibodies without major cross-reactivity with normal tissues. A more detailed analysis of lesion targeting in a larger patient population with correlation to immunohistology and standard imaging modalities has been reported.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Antígenos de Neoplasias/inmunología , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Oxidorreductasas/inmunología , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Radioisótopos/farmacocinética , Radiofármacos/farmacocinética , Neoplasias de los Tejidos Blandos/diagnóstico por imagen , Neoplasias de los Tejidos Blandos/secundario , Circonio/farmacocinética , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Reacciones Cruzadas/inmunología , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/metabolismo , Inmunoglobulina G/uso terapéutico , Concentración 50 Inhibidora , Inyecciones Intravenosas , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Estudios Prospectivos , Neoplasias de la Próstata Resistentes a la Castración/sangre , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Radioisótopos/administración & dosificación , Radiofármacos/administración & dosificación , Distribución Tisular , Circonio/administración & dosificación
7.
Radiology ; 287(2): 667-675, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29388903

RESUMEN

Purpose To assess the clinical safety, pharmacokinetics, and tumor imaging characteristics of fluorine 18-(2S,4R)-4-fluoroglutamine (FGln), a glutamine analog radiologic imaging agent. Materials and Methods This study was approved by the institutional review board and conducted under a U.S. Food and Drug Administration-approved Investigational New Drug application in accordance with the Helsinki Declaration and the Health Insurance Portability and Accountability Act. All patients provided written informed consent. Between January 2013 and October 2016, 25 adult patients with cancer received an intravenous bolus of FGln tracer (mean, 244 MBq ± 118, <100 µg) followed by positron emission tomography (PET) and blood radioassays. Patient data were summarized with descriptive statistics. FGln biodistribution and plasma amino acid levels in nonfasting patients (n = 13) were compared with those from patients who fasted at least 8 hours before injection (n = 12) by using nonparametric one-way analysis of variance with Bonferroni correction. Tumor FGln avidity versus fluorodeoxyglucose (FDG) avidity in patients with paired PET scans (n = 15) was evaluated with the Fisher exact test. P < .05 was considered indicative of a statistically significant difference. Results FGln PET depicted tumors of different cancer types (breast, pancreas, renal, neuroendocrine, lung, colon, lymphoma, bile duct, or glioma) in 17 of the 25 patients, predominantly clinically aggressive tumors with genetic mutations implicated in abnormal glutamine metabolism. Acute fasting had no significant effect on FGln biodistribution and plasma amino acid levels. FGln-avid tumors were uniformly FDG-avid but not vice versa (P = .07). Patients experienced no adverse effects. Conclusion Preliminary human FGln PET trial results provide clinical validation of abnormal glutamine metabolism as a potential tumor biomarker for targeted radiotracer imaging in several different cancer types. © RSNA, 2018 Online supplemental material is available for this article. Clinical trial registration no. NCT01697930.


Asunto(s)
Radioisótopos de Flúor/farmacocinética , Glutamina/análogos & derivados , Glutamina/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Tomografía de Emisión de Positrones , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica , Femenino , Radioisótopos de Flúor/metabolismo , Glutamina/farmacocinética , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/patología , Distribución Tisular/efectos de los fármacos , Estados Unidos , United States Food and Drug Administration
8.
Mol Pharm ; 15(6): 2133-2141, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29684277

RESUMEN

Antibodies labeled with positron-emitting isotopes have been used for tumor detection, predicting which patients may respond to tumor antigen-directed therapy, and assessing pharmacodynamic effects of drug interventions. Prolactin receptor (PRLR) is overexpressed in breast and prostate cancers and is a new target for cancer therapy. We evaluated REGN2878, an anti-PRLR monoclonal antibody, as an immunoPET reagent. REGN2878 was labeled with Zr-89 after conjugation with desferrioxamine B or labeled with I-131/I-124. In vitro determination of the half-maximal inhibitory concentration (IC50) of parental REGN2878, DFO-REGN2878, and iodinated REGN2878 was performed by examining the effect of the increasing amounts of these on uptake of trace-labeled I-131 REGN2878. REGN1932, a non-PRLR binding antibody, was used as a control. Imaging and biodistribution studies were performed in mice bearing tumor xenografts with various expression levels of PRLR, including MCF-7, transfected MCF-7/PRLR, PC3, and transfected PC3/PRLR and T4D7v11 cell lines. The specificity of uptake in tumors was evaluated by comparing Zr-89 REGN2878 and REGN1932, and in vivo competition compared Zr-89 REGN2878 uptake in tumor xenografts with and without prior injection of 2 mg of nonradioactive REGN2878. The competition binding assay of DFO-REGN2878 at ratios of 3.53-5.77 DFO per antibody showed IC50 values of 0.4917 and 0.7136 nM, respectively, compared to 0.3455 nM for parental REGN2878 and 0.3343 nM for I-124 REGN2878. Imaging and biodistribution studies showed excellent targeting of Zr-89 REGN2878 in PRLR-positive xenografts at delayed times of 189 h (presented as mean ± 1 SD, percent injected activity per mL (%IA/mL) 74.6 ± 33.8%IA/mL). In contrast, MCF-7/PRLR tumor xenografts showed a low uptake (7.0 ± 2.3%IA/mL) of control Zr-89 REGN1932 and a very low uptake and rapid clearance of I-124 REGN2878 (1.4 ± 0.6%IA/mL). Zr-89 REGN2878 has excellent antigen-specific targeting in various PRLR tumor xenograft models. We estimated, using image-based kinetic modeling, that PRLR antigen has a very rapid in vivo turnover half-life of ∼14 min from the cell membrane. Despite relatively modest estimated tumor PRLR expression numbers, PRLR-expressing cells have shown final retention of the Zr-89 REGN2878 antibody, with an uptake that appeared to be related to PRLR expression. This reagent has the potential to be used in clinical trials targeting PRLR.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Inmunoconjugados/administración & dosificación , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/administración & dosificación , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacocinética , Línea Celular Tumoral , Femenino , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Inmunoconjugados/farmacocinética , Ratones , Ratones Desnudos , Imagen Molecular/métodos , Neoplasias/patología , Radiofármacos/química , Radiofármacos/inmunología , Radiofármacos/farmacocinética , Receptores de Prolactina/inmunología , Receptores de Prolactina/metabolismo , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Pediatr Blood Cancer ; 65(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28940863

RESUMEN

BACKGROUND: High-risk and recurrent medulloblastoma (MB) is associated with significant mortality. The murine monoclonal antibody 3F8 targets the cell-surface disialoganglioside GD2 on MB. We tested the efficacy, toxicity, and dosimetry of compartmental radioimmunotherapy (cRIT) with intraventricular 131 I-labeled 3F8 in patients with MB on a phase II clinical trial. METHODS: Patients with histopathologically confirmed high-risk or recurrent MB were eligible for cRIT. After determining adequate cerebrospinal fluid (CSF) flow, patients received 2 mCi (where Ci is Curie) 124 I-3F8 or 131 I-3F8 with nuclear imaging for dosimetry, followed by up to four therapeutic (10 mCi/dose) 131 I-3F8 injections. Dosimetry estimates were based on serial CSF and blood samplings over 48 hr plus region-of-interest analyses on serial imaging scans. Disease evaluation included pre- and posttherapy brain/spine magnetic resonance imaging approximately every 3 months for the first year after treatment, and every 6-12 months thereafter. RESULTS: Forty-three patients received a total of 167 injections; 42 patients were evaluable for outcome. No treatment-related deaths occurred. Toxicities related to drug administration included acute bradycardia with somnolence, headache, fatigue, and CSF pleocytosis consistent with chemical meningitis and dystonic reaction. Total CSF absorbed dose was 1,453 cGy (where Gy is Gray; 350.0-2,784). Median overall survival from first dose of cRIT was 24.9 months (95% confidence interval [CI]:16.3-55.8). Patients treated in radiographic and cytologic remission were at a lower risk of death compared to patients with radiographically measurable disease (hazard ratio: 0.40, 95% CI: 0.18-0.88, P = 0.024). CONCLUSIONS: cRIT with 131 I-3F8 is safe, has favorable dosimetry to CSF, and when added to salvage therapy using conventional modalities, may have clinical utility in maintaining remission in high-risk or recurrent MB.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/administración & dosificación , Antineoplásicos Inmunológicos/administración & dosificación , Neoplasias Cerebelosas/radioterapia , Radioisótopos de Yodo/administración & dosificación , Meduloblastoma/radioterapia , Radioinmunoterapia , Adolescente , Adulto , Neoplasias Cerebelosas/líquido cefalorraquídeo , Neoplasias Cerebelosas/diagnóstico por imagen , Neoplasias Cerebelosas/mortalidad , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Humanos , Lactante , Inyecciones Intraventriculares , Masculino , Meduloblastoma/líquido cefalorraquídeo , Meduloblastoma/diagnóstico por imagen , Meduloblastoma/mortalidad , Tasa de Supervivencia
10.
Ann Plast Surg ; 80(4 Suppl 4): S204-S210, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29481480

RESUMEN

INTRODUCTION: Capsular contracture after breast reconstruction is a morbid complication, occurring in 30.0% to 47.5% of patients undergoing postoperative radiotherapy. Although it is well known that radiation increases rate of capsular contracture, there are few well-established animal models that faithfully replicate standard-of-care clinical practice, that is, prosthesis placement at the time of mastectomy followed by delayed radiotherapy. To better recapitulate current clinical practice, we developed a murine model in which the implant sites were irradiated 10 days postoperatively, rather than at time of surgery. METHODS: Hemispherical implants were created from polydimethylsiloxane and implanted bilaterally in the subcutaneous dorsa of 20 C57Bl/6 mice. Mice were randomized to 5 treatment groups, differing in irradiation dose: 0 to 40 Gy. Ten days postoperatively, irradiation was performed using 250-kVp x-rays (XRAD225Cx, Precision X-ray, North Branford, Conn). In 1 mouse per group, dosimeters were placed subcutaneously to measure the delivered absorbed dose. Thirty-one days postoperatively, the mice were sacrificed and examined grossly, and periprosthetic tissues were removed for histologic analysis of periprosthetic capsule thickness and cellular deposition. RESULTS: Total radiation dose was calculated by the treatment planning software and confirmed by the in vivo dosimeters. Physical examination of the irradiated region demonstrated evidence of local radiation delivery, including circular patterns of hair blanching and thinning directly over the implants. Furthermore, histologic analysis of the irradiated epidermis demonstrated dose-dependent radiation changes including keratin whorls and patches of uneven epidermal thickness. There was no statistically significant difference in capsule thickness among the groups. Mice in the 30 and 40 Gy groups endured complications including shortness of breath, coagulopathy, and death, signs of systemic radiation poisoning. CONCLUSIONS: There was no evidence of increased periprosthetic capsule thickness with localized irradiation, irrespective of dose up to 20 Gy. These results differ from those previously published, which demonstrated increased capsule thickness with 10 Gy irradiation. Given the evidence of local radiation delivery, we believe that the lack of increase in capsule thickness observed in our experiment is a real phenomenon and demonstrate the difficulty in creating an easily reproducible rodent model that mimics the effects of postmastectomy implant-based reconstruction and irradiation.


Asunto(s)
Implantación de Mama , Neoplasias de la Mama/radioterapia , Modelos Animales de Enfermedad , Contractura Capsular en Implantes/etiología , Mastectomía , Ratones Endogámicos C57BL/cirugía , Radioterapia Adyuvante/efectos adversos , Animales , Implantación de Mama/instrumentación , Implantes de Mama , Neoplasias de la Mama/cirugía , Femenino , Fibrosis , Humanos , Contractura Capsular en Implantes/patología , Masculino , Ratones , Distribución Aleatoria
11.
N Engl J Med ; 368(7): 623-32, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23406027

RESUMEN

BACKGROUND: Metastatic thyroid cancers that are refractory to radioiodine (iodine-131) are associated with a poor prognosis. In mouse models of thyroid cancer, selective mitogen-activated protein kinase (MAPK) pathway antagonists increase the expression of the sodium-iodide symporter and uptake of iodine. Their effects in humans are not known. METHODS: We conducted a study to determine whether the MAPK kinase (MEK) 1 and MEK2 inhibitor selumetinib (AZD6244, ARRY-142886) could reverse refractoriness to radioiodine in patients with metastatic thyroid cancer. After stimulation with thyrotropin alfa, dosimetry with iodine-124 positron-emission tomography (PET) was performed before and 4 weeks after treatment with selumetinib (75 mg twice daily). If the second iodine-124 PET study indicated that a dose of iodine-131 of 2000 cGy or more could be delivered to the metastatic lesion or lesions, therapeutic radioiodine was administered while the patient was receiving selumetinib. RESULTS: Of 24 patients screened for the study, 20 could be evaluated. The median age was 61 years (range, 44 to 77), and 11 patients were men. Nine patients had tumors with BRAF mutations, and 5 patients had tumors with mutations of NRAS. Selumetinib increased the uptake of iodine-124 in 12 of the 20 patients (4 of 9 patients with BRAF mutations and 5 of 5 patients with NRAS mutations). Eight of these 12 patients reached the dosimetry threshold for radioiodine therapy, including all 5 patients with NRAS mutations. Of the 8 patients treated with radioiodine, 5 had confirmed partial responses and 3 had stable disease; all patients had decreases in serum thyroglobulin levels (mean reduction, 89%). No toxic effects of grade 3 or higher attributable by the investigators to selumetinib were observed. One patient received a diagnosis of myelodysplastic syndrome more than 51 weeks after radioiodine treatment, with progression to acute leukemia. CONCLUSIONS: Selumetinib produces clinically meaningful increases in iodine uptake and retention in a subgroup of patients with thyroid cancer that is refractory to radioiodine; the effectiveness may be greater in patients with RAS-mutant disease. (Funded by the American Thyroid Association and others; ClinicalTrials.gov number, NCT00970359.).


Asunto(s)
Bencimidazoles/uso terapéutico , Radioisótopos de Yodo/uso terapéutico , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Neoplasias de la Tiroides/radioterapia , Adulto , Anciano , Bencimidazoles/farmacología , Femenino , Humanos , Radioisótopos de Yodo/farmacocinética , Masculino , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Imagen Multimodal , Mutación , Metástasis de la Neoplasia , Tomografía de Emisión de Positrones , Radiometría , Simportadores/efectos de los fármacos , Simportadores/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Tirotropina Alfa/farmacología , Tomografía Computarizada por Rayos X
13.
Eur J Nucl Med Mol Imaging ; 43(5): 925-937, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26596724

RESUMEN

PURPOSE: GPA33 is a colorectal cancer (CRC) antigen with unique retention properties after huA33-mediated tumor targeting. We tested a pretargeted radioimmunotherapy (PRIT) approach for CRC using a tetravalent bispecific antibody with dual specificity for GPA33 tumor antigen and DOTA-Bn-(radiolanthanide metal) complex. METHODS: PRIT was optimized in vivo by titrating sequential intravenous doses of huA33-C825, the dextran-based clearing agent, and the C825 haptens (177)Lu-or (86)Y-DOTA-Bn in mice bearing the SW1222 subcutaneous (s.c.) CRC xenograft model. RESULTS: Using optimized PRIT, therapeutic indices (TIs) for tumor radiation-absorbed dose of 73 (tumor/blood) and 12 (tumor/kidney) were achieved. Estimated absorbed doses (cGy/MBq) to tumor, blood, liver, spleen, and kidney for single-cycle PRIT were 65.8, 0.9 (TI 73), 6.3 (TI 10), 6.6 (TI 10), and 5.3 (TI 12), respectively. Two cycles of PRIT (66.6 or 111 MBq (177)Lu-DOTA-Bn) were safe and effective, with a complete response of established s.c. tumors (100 - 700 mm(3)) in nine of nine mice, with two mice alive without recurrence at >140 days. Tumor log kill in this model was estimated to be 2.1 - 3.0 based on time to 500-mm(3) tumor recurrence. In addition, PRIT dosimetry/diagnosis was performed by PET imaging of the positron-emitting DOTA hapten (86)Y-DOTA-Bn. CONCLUSION: We have developed anti-GPA33 PRIT as a triple-step theranostic strategy for preclinical detection, dosimetry, and safe targeted radiotherapy of established human colorectal mouse xenografts.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Afinidad de Anticuerpos , Neoplasias Colorrectales/diagnóstico por imagen , Inmunoconjugados/uso terapéutico , Glicoproteínas de Membrana/inmunología , Radioinmunoterapia , Radiofármacos/uso terapéutico , Animales , Anticuerpos Biespecíficos/inmunología , Neoplasias Colorrectales/radioterapia , Inmunoconjugados/inmunología , Inmunoglobulina G/inmunología , Lutecio/uso terapéutico , Ratones , Radiofármacos/inmunología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Radioisótopos de Itrio/uso terapéutico
14.
Small ; 11(14): 1721-32, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25471698

RESUMEN

Cellular and molecular-level interactions of nanoparticles with biological systems are a rapidly evolving field requiring an improved understanding of endocytic trafficking as the principal driver and regulator of signaling events and cellular responses. An understanding of these processes is vital to nanomedicine applications. Studies investigating the complex interplay of these processes and their relationship to targeted nanoparticles exploiting endocytic pathways are notably lacking. It is known that integrins traffic through the endosomal pathway and participate in diverse roles controlling signal transduction, cell migration, and proliferation. Here, it is shown that ultrasmall, nontoxic, core-shell silica nanoparticles (C-dots), surface-functionalized with cRGDY peptides, modestly activate integrin-signaling pathways, in turn, promoting the enhancement of cellular functions. First, nanomolar concentrations, two orders of magnitude higher than clinical trial doses, internalize within αvß3 integrin-expressing melanoma and endothelial cells, predominantly through an integrin receptor-dependent endocytic route. Second, integrin-mediated activation of focal adhesion kinase (FAK) and downstream signaling pathways occurs, in turn, upregulating phosphorylated protein expression levels and promoting concentration-dependent cellular migration and proliferative activity. Inhibiting FAK catalytic activity leads to decreased phosphorylation levels and cellular migration rates. These findings may inform the design of more effectively-targeted nanomedicines and provide insights into endocytic regulation of signal transduction.


Asunto(s)
Nanopartículas , Transducción de Señal , Dióxido de Silicio/química , Ciclo Celular , Endocitosis , Células Endoteliales de la Vena Umbilical Humana , Humanos , Integrinas/metabolismo
15.
FASEB J ; 28(2): 676-82, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24186964

RESUMEN

We investigated the therapeutic efficacy of a replication-competent oncolytic vaccinia virus, GLV-1h153, carrying human sodium iodide symporter (hNIS), in combination with radioiodine in an orthotopic triple-negative breast cancer (TNBC) murine model. In vitro viral infection was confirmed by immunoblotting and radioiodine uptake assays. Orthotopic xenografts (MDA-MB-231 cells) received intratumoral injection of GLV-1h153 or PBS. One week after viral injection, xenografts were randomized into 4 treatment groups: GLV-1h153 alone, GLV-1h153 and (131)I (∼ 5 mCi), (131)I alone, or PBS, and followed for tumor growth. Kruskal-Wallis and Wilcoxon tests were performed for statistical analysis. Radiouptake assay showed a 178-fold increase of radioiodine uptake in hNIS-expressing infected cells compared with PBS control. Systemic (131)I-iodide in combination with GLV-1h153 resulted in a 6-fold increase in tumor regression (24 compared to 146 mm(3) for the virus-only treatment group; P<0.05; d 40). We demonstrated that a novel vaccinia virus, GLV-1h153, expresses hNIS, increases the expression of the symporter in TNBC cells, and serves both as a gene marker for noninvasive imaging of virus and as a vehicle for targeted radionuclide therapy with (131)I.


Asunto(s)
Radioisótopos de Yodo/uso terapéutico , Neoplasias de la Mama Triple Negativas/radioterapia , Neoplasias de la Mama Triple Negativas/terapia , Virus Vaccinia/fisiología , Animales , Western Blotting , Línea Celular Tumoral , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Ratones , Neoplasias de la Mama Triple Negativas/metabolismo , Virus Vaccinia/genética
16.
Mol Imaging Biol ; 26(1): 17-28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37964036

RESUMEN

Preclinical dosimetry is essential for guiding the design of animal radiopharmaceutical biodistribution, imaging, and therapy experiments, evaluating efficacy and/or toxicities in such experiments, ensuring compliance with ethical standards for animal research, and, perhaps most importantly, providing reasonable initial estimates of normal-organ doses in humans, required for clinical translation of new radiopharmaceuticals. This MIB Guide provides a basic protocol for obtaining preclinical dosimetry estimates with organ-level dosimetry software.


Asunto(s)
Radiometría , Radiofármacos , Animales , Humanos , Radiofármacos/uso terapéutico , Distribución Tisular , Radiometría/métodos , Diagnóstico por Imagen , Programas Informáticos
17.
Breast Cancer Res ; 15(2): R26, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23506710

RESUMEN

INTRODUCTION: Surgery is currently the definitive treatment for early-stage breast cancer. However, the rate of positive surgical margins remains unacceptably high. The human sodium iodide symporter (hNIS) is a naturally occurring protein in human thyroid tissue, which enables cells to concentrate radionuclides. The hNIS has been exploited to image and treat thyroid cancer. We therefore investigated the potential of a novel oncolytic vaccinia virus GLV1h-153 engineered to express the hNIS gene for identifying positive surgical margins after tumor resection via positron emission tomography (PET). Furthermore, we studied its role as an adjuvant therapeutic agent in achieving local control of remaining tumors in an orthotopic breast cancer model. METHODS: GLV-1h153, a replication-competent vaccinia virus, was tested against breast cancer cell lines at various multiplicities of infection (MOIs). Cytotoxicity and viral replication were determined. Mammary fat pad tumors were generated in athymic nude mice. To determine the utility of GLV-1h153 in identifying positive surgical margins, 90% of the mammary fat pad tumors were surgically resected and subsequently injected with GLV-1h153 or phosphate buffered saline (PBS) in the surgical wound. Serial Focus 120 microPET images were obtained six hours post-tail vein injection of approximately 600 µCi of 124I-iodide. RESULTS: Viral infectivity, measured by green fluorescent protein (GFP) expression, was time- and concentration-dependent. All cell lines showed less than 10% of cell survival five days after treatment at an MOI of 5. GLV-1h153 replicated efficiently in all cell lines with a peak titer of 27 million viral plaque forming units (PFU) ( <10,000-fold increase from the initial viral dose ) by Day 4. Administration of GLV-1h153 into the surgical wound allowed positive surgical margins to be identified via PET scanning. In vivo, mean volume of infected surgically resected residual tumors four weeks after treatment was 14 mm3 versus 168 mm3 in untreated controls (P < 0.05). CONCLUSIONS: This is the first study to our knowledge to demonstrate a novel vaccinia virus carrying hNIS as an imaging tool in identifying positive surgical margins of breast cancers in an orthotopic murine model. Moreover, our results suggest that GLV-1h153 is a promising therapeutic agent in achieving local control for positive surgical margins in resected breast tumors.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Neoplasia Residual/patología , Neoplasia Residual/prevención & control , Simportadores/metabolismo , Virus Vaccinia/fisiología , Replicación Viral , Animales , Neoplasias de la Mama/virología , Muerte Celular , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Desnudos , Neoplasia Residual/virología , Tomografía de Emisión de Positrones , Simportadores/genética
18.
J Surg Res ; 182(1): 85-93, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22998776

RESUMEN

BACKGROUND: The BRAF(V600E) mutation is present in 62% of radioactive iodine-resistant thyroid tumors and is associated with downregulation of the sodium-iodide symporter (NIS) and thyroid stimulating hormone receptor (TSHr). We sought to evaluate the combined effect of BRAF inhibition and TSH supplementation on (131)I uptake of BRAF(V600E)-mutant human thyroid cancer cells. MATERIALS AND METHODS: WRO cells (a BRAF(V600E)-mutant follicular-derived papillary thyroid carcinoma cell line) were transfected with small interfering RNA targeting BRAF for 72 h in a physiological TSH environment. NIS and TSHr expression were then evaluated at three levels: gene expression, protein levels, and (131)I uptake. These three main outcomes were then reassessed in TSH-depleted media and media supplemented with supratherapeutic concentrations of TSH. RESULTS: NIS gene expression increased 5.5-fold 36 h after transfection (P = 0.01), and TSHr gene expression increased 2.8-fold at 24 h (P = 0.02). NIS and TSHr protein levels were similarly increased 48 and 24 h after transfection, respectively. Seventy-two hours after BRAF inhibition, (131)I uptake was unchanged in TSH-depleted media, increased by 7.5-fold (P < 0.01) in physiological TSH media, and increased by 9.1-fold (P < 0.01) in supratherapeutic TSH media. CONCLUSIONS: The combined strategy of BRAF inhibition and TSH supplementation results in greater (131)I uptake than when either technique is used alone. This represents a simple and feasible approach that may improve outcomes in patients with radioactive iodine-resistant thyroid carcinomas for which current treatment algorithms are ineffective.


Asunto(s)
Adenocarcinoma Folicular/metabolismo , Silenciador del Gen , Yodo/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias de la Tiroides/metabolismo , Tirotropina/farmacología , Adenocarcinoma Folicular/patología , Línea Celular Tumoral , Silenciador del Gen/efectos de los fármacos , Humanos , Técnicas In Vitro , Radioisótopos de Yodo , Mutación/genética , ARN Interferente Pequeño/farmacología , Receptores de Tirotropina/metabolismo , Simportadores/metabolismo , Neoplasias de la Tiroides/patología , Transfección
19.
Res Sq ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645915

RESUMEN

Preclinical dosimetry is essential for guiding the design of animal radiopharmaceutical biodistribution, imaging, and therapy experiments, evaluating efficacy and/or toxicities in such experiments, ensuring compliance with ethical standards for animal research, and providing reasonable initial estimates of normal-organ doses in humans, required for clinical translation of new radiopharmaceuticals. This MIB guide provides a basic protocol for obtaining preclinical dosimetry estimates with organ-level dosimetry software.

20.
Methods Cell Biol ; 180: 93-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37890935

RESUMEN

Radiopharmaceutical therapy is a rapidly growing field for the treatment of cancer due to its high specificity and ability to target individual affected cells. A key component of the pre-clinical development of a new therapeutic radiopharmaceutical is the determination of its time-dependent distribution in tumors, normal tissues, and the whole body in mouse tumor models. Here, we provide an overview of the available instrumentation for the novice in radiation measurement. We also detail the methodology for assessing distribution and kinetics of a radiopharmaceutical and calculating radiation absorbed dose in mice using a gamma counter or a PET or SPECT camera.


Asunto(s)
Neoplasias , Radiofármacos , Ratones , Animales , Radiometría/métodos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA