Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Pathog ; 14(3): e1006964, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29590202

RESUMEN

Defining the complex dynamics of Zika virus (ZIKV) infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a "synthetic swarm" whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics.


Asunto(s)
Evolución Biológica , Biblioteca de Genes , Transmisión Vertical de Enfermedad Infecciosa , Macaca mulatta/genética , Mosquitos Vectores , Infección por el Virus Zika/complicaciones , Virus Zika/clasificación , Animales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Macaca mulatta/virología , Masculino , Viremia , Virus Zika/genética , Virus Zika/patogenicidad , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
2.
J Virol ; 92(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118125

RESUMEN

Developing biological interventions to control human immunodeficiency virus (HIV) replication in the absence of antiretroviral therapy (ART) could contribute to the development of a functional cure. As a potential alternative to ART, the interleukin-15 (IL-15) superagonist ALT-803 has been shown to boost the number and function of HIV-specific CD8+ T and NK cell populations in vitro Four simian immunodeficiency virus (SIV)-positive rhesus macaques, three of whom possessed major histocompatibility complex alleles associated with control of SIV and all of whom had received SIV vaccine vectors that had the potential to elicit CD8+ T cell responses, were given ALT-803 in three treatment cycles. The first and second cycles of treatment were separated by 2 weeks, while the third cycle was administered after a 29-week break. ALT-803 transiently elevated the total CD8+ effector and central memory T cell and NK cell populations in peripheral blood, while viral loads transiently decreased by ∼2 logs in all animals. Virus suppression was not sustained as T cells became less responsive to ALT-803 and waned in numbers. No effect on viral loads was observed in the second cycle of ALT-803, concurrent with downregulation of the IL-2/15 common γC and ß chain receptors on both CD8+ T cells and NK cells. Furthermore, populations of immunosuppressive T cells increased during the second cycle of ALT-803 treatment. During the third treatment cycle, responsiveness to ALT-803 was restored. CD8+ T cells and NK cells increased again 3- to 5-fold, and viral loads transiently decreased again by 1 to 2 logs.IMPORTANCE Overall, our data show that ALT-803 has the potential to be used as an immunomodulatory agent to elicit effective immune control of HIV/SIV replication. We identify mechanisms to explain why virus control is transient, so that this model can be used to define a clinically appropriate treatment regimen.


Asunto(s)
Proteínas/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Anticuerpos Monoclonales/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular , Modelos Animales de Enfermedad , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Macaca mulatta , Proteínas Recombinantes de Fusión , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Carga Viral
3.
Sci Rep ; 13(1): 18924, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963908

RESUMEN

Age-related disease may be mediated by low levels of chronic inflammation ("inflammaging"). Recent work suggests that gut microbes can contribute to inflammation via degradation of the intestinal barrier. While aging and age-related diseases including Alzheimer's disease (AD) are linked to altered microbiome composition and higher levels of gut microbial components in systemic circulation, the role of intestinal inflammation remains unclear. To investigate whether greater gut inflammation is associated with advanced age and AD pathology, we assessed fecal samples from older adults to measure calprotectin, an established marker of intestinal inflammation which is elevated in diseases of gut barrier integrity. Multiple regression with maximum likelihood estimation and Satorra-Bentler corrections were used to test relationships between fecal calprotectin and clinical diagnosis, participant age, cerebrospinal fluid biomarkers of AD pathology, amyloid burden measured using 11C-Pittsburgh compound B positron emission tomography (PiB PET) imaging, and performance on cognitive tests measuring executive function and verbal learning and recall. Calprotectin levels were elevated in advanced age and were higher in participants diagnosed with amyloid-confirmed AD dementia. Additionally, among individuals with AD dementia, higher calprotectin was associated with greater amyloid burden as measured with PiB PET. Exploratory analyses indicated that calprotectin levels were also associated with cerebrospinal fluid markers of AD, and with lower verbal memory function even among cognitively unimpaired participants. Taken together, these findings suggest that intestinal inflammation is linked with brain pathology even in the earliest disease stages. Moreover, intestinal inflammation may exacerbate the progression toward AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Estudios de Cohortes , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Tomografía Computarizada por Rayos X , Tomografía de Emisión de Positrones/métodos , Amiloide/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Biomarcadores/metabolismo , Proteínas tau/metabolismo , Disfunción Cognitiva/patología
4.
J Alzheimers Dis ; 90(2): 585-597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36155509

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common aging-associated neurodegenerative disease; nevertheless, the etiology and progression of the disease is still incompletely understood. We have previously shown that the microbially-derived metabolite trimethylamine N-oxide (TMAO) is elevated in the cerebrospinal fluid (CSF) of individuals with cognitive impairment due to AD and positively correlates with increases in CSF biomarkers for tangle, plaque, and neuronal pathology. OBJECTIVE: We assessed the direct impact of TMAO on AD progression. METHODS: To do so, transgenic 5XFAD mice were supplemented with TMAO for 12 weeks. Neurite density was assessed through quantitative brain microstructure imaging with neurite orientation dispersion and density imaging magnetic resonance imaging (MRI). Label-free, quantitative proteomics was performed on cortex lysates from TMAO-treated and untreated animals. Amyloid-ß plaques, astrocytes, and microglia were assessed by fluorescent immunohistochemistry and synaptic protein expression was quantified via western blot. RESULTS: Oral TMAO administration resulted in significantly reduced neurite density in several regions of the brain. Amyloid-ß plaque mean intensity was reduced, while plaque count and size remained unaltered. Proteomics analysis revealed that TMAO treatment impacted the expression of 30 proteins (1.5-fold cut-off) in 5XFAD mice, including proteins known to influence neuronal health and amyloid-ß precursor protein processing. TMAO treatment did not alter astrocyte and microglial response nor cortical synaptic protein expression. CONCLUSION: These data suggest that elevated plasma TMAO impacts AD pathology via reductions in neurite density.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Neuritas/patología , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/patología , Placa Amiloide/patología , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos
5.
Nat Commun ; 8(1): 2096, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29235456

RESUMEN

Mouse and nonhuman primate models now serve as useful platforms to study Zika virus (ZIKV) pathogenesis, candidate therapies, and vaccines, but they rely on needle inoculation of virus: the effects of mosquito-borne infection on disease outcome have not been explored in these models. Here we show that infection via mosquito bite delays ZIKV replication to peak viral loads in rhesus macaques. Importantly, in mosquito-infected animals ZIKV tissue distribution was limited to hemolymphatic tissues, female reproductive tract tissues, kidney, and liver, potentially emulating key features of human ZIKV infections, most of which are characterized by mild or asymptomatic disease. Furthermore, deep sequencing analysis reveals that ZIKV populations in mosquito-infected monkeys show greater sequence heterogeneity and lower overall diversity than in needle-inoculated animals. This newly developed system will be valuable for studying ZIKV disease because it more closely mimics human infection by mosquito bite than needle-based inoculations.


Asunto(s)
Aedes/virología , Tropismo Viral/fisiología , Replicación Viral , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Chlorocebus aethiops , Femenino , Humanos , Cinética , Macaca mulatta , Masculino , Mosquitos Vectores/virología , Enfermedades de los Primates/virología , Células Vero , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA