Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(14): 3812-3828.e30, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34214472

RESUMEN

We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.


Asunto(s)
Antígenos CD28/deficiencia , Patrón de Herencia/genética , Papillomaviridae/fisiología , Piel/virología , Linfocitos T/inmunología , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Antígenos CD28/genética , Antígenos CD28/metabolismo , Linfocitos T CD4-Positivos/inmunología , Niño , Endopeptidasas/metabolismo , Femenino , Genes Recesivos , Células HEK293 , Homocigoto , Humanos , Inmunidad Humoral , Memoria Inmunológica , Células Jurkat , Queratinocitos/patología , Masculino , Ratones Endogámicos C57BL , Oncogenes , Papiloma/patología , Papiloma/virología , Linaje , Señales de Clasificación de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Blood ; 141(22): 2713-2726, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36952639

RESUMEN

Dedicator of cytokinesis (DOCK) proteins play a central role in actin cytoskeleton regulation. This is highlighted by the DOCK2 and DOCK8 deficiencies leading to actinopathies and immune deficiencies. DOCK8 and DOCK11 activate CDC42, a Rho-guanosine triphosphate hydrolases involved in actin cytoskeleton dynamics, among many cellular functions. The role of DOCK11 in human immune disease has been long suspected but, to the best of our knowledge, has never been described to date. We studied 8 male patients, from 7 unrelated families, with hemizygous DOCK11 missense variants leading to reduced DOCK11 expression. The patients were presenting with early-onset autoimmunity, including cytopenia, systemic lupus erythematosus, skin, and digestive manifestations. Patients' platelets exhibited abnormal ultrastructural morphology and spreading as well as impaired CDC42 activity. In vitro activated T cells and B-lymphoblastoid cell lines from patients exhibited aberrant protrusions and abnormal migration speed in confined channels concomitant with altered actin polymerization during migration. Knock down of DOCK11 recapitulated these abnormal cellular phenotypes in monocytes-derived dendritic cells and primary activated T cells from healthy controls. Lastly, in line with the patients' autoimmune manifestations, we also observed abnormal regulatory T-cell (Treg) phenotype with profoundly reduced FOXP3 and IKZF2 expression. Moreover, we found reduced T-cell proliferation and impaired STAT5B phosphorylation upon interleukin-2 stimulation of the patients' lymphocytes. In conclusion, DOCK11 deficiency is a new X-linked immune-related actinopathy leading to impaired CDC42 activity and STAT5 activation, and is associated with abnormal actin cytoskeleton remodeling as well as Treg phenotype, culminating in immune dysregulation and severe early-onset autoimmunity.


Asunto(s)
Enfermedades del Sistema Inmune , Síndromes de Inmunodeficiencia , Humanos , Masculino , Citoesqueleto de Actina/metabolismo , Autoinmunidad , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Enfermedades del Sistema Inmune/metabolismo , Síndromes de Inmunodeficiencia/complicaciones , Síndromes de Inmunodeficiencia/genética , Linfocitos T Reguladores
3.
Am J Hum Genet ; 108(6): 1126-1137, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34010604

RESUMEN

Dysregulated transforming growth factor TGF-ß signaling underlies the pathogenesis of genetic disorders affecting the connective tissue such as Loeys-Dietz syndrome. Here, we report 12 individuals with bi-allelic loss-of-function variants in IPO8 who presented with a syndromic association characterized by cardio-vascular anomalies, joint hyperlaxity, and various degree of dysmorphic features and developmental delay as well as immune dysregulation; the individuals were from nine unrelated families. Importin 8 belongs to the karyopherin family of nuclear transport receptors and was previously shown to mediate TGF-ß-dependent SMADs trafficking to the nucleus in vitro. The important in vivo role of IPO8 in pSMAD nuclear translocation was demonstrated by CRISPR/Cas9-mediated inactivation in zebrafish. Consistent with IPO8's role in BMP/TGF-ß signaling, ipo8-/- zebrafish presented mild to severe dorso-ventral patterning defects during early embryonic development. Moreover, ipo8-/- zebrafish displayed severe cardiovascular and skeletal defects that mirrored the human phenotype. Our work thus provides evidence that IPO8 plays a critical and non-redundant role in TGF-ß signaling during development and reinforces the existing link between TGF-ß signaling and connective tissue defects.


Asunto(s)
Enfermedades Óseas/etiología , Enfermedades Cardiovasculares/etiología , Enfermedades del Tejido Conjuntivo/etiología , Inmunidad Celular/inmunología , Mutación con Pérdida de Función , Pérdida de Heterocigocidad , beta Carioferinas/genética , Adolescente , Adulto , Animales , Enfermedades Óseas/patología , Enfermedades Cardiovasculares/patología , Niño , Enfermedades del Tejido Conjuntivo/patología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Adulto Joven , Pez Cebra , beta Carioferinas/metabolismo
4.
J Med Genet ; 60(4): 337-345, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927022

RESUMEN

BACKGROUND: Ellis-Van Creveld (EVC) syndrome is one of the entities belonging to the skeletal ciliopathies short rib-polydactyly subgroup. Major signs are ectodermal dysplasia, chondrodysplasia, polydactyly and congenital cardiopathy, with a high degree of variability in phenotypes ranging from lethal to mild clinical presentations. The EVC and EVC2 genes are the major genes causative of EVC syndrome. However, an increased number of genes involved in the ciliopathy complex have been identified in EVC syndrome, leading to a better understanding of its physiopathology, namely, WDR35, GLI1, DYNC2LI1, PRKACA, PRKACB and SMO. They all code for proteins located in the primary cilia, playing a key role in signal transduction of the Hedgehog pathways. METHODS: The aim of this study was the analysis of 50 clinically identified EVC cases from 45 families to further define the phenotype and molecular bases of EVC. RESULTS: Our detection rate in the cohort of 45 families was of 91.11%, with variants identified in EVC/EVC2 (77.8%), DYNC2H1 (6.7%), DYNC2LI1 (2.2%), SMO (2.2%) or PRKACB (2.2%). No distinctive feature was remarkable of a specific genotype-phenotype correlation. Interestingly, we identified a high proportion of heterozygous deletions in EVC/EVC2 of variable sizes (26.92%), mostly inherited from the mother, and probably resulting from recombinations involving Alu sequences. CONCLUSION: We confirmed that EVC and EVC2 are the major genes involved in the EVC phenotype and highlighted the high prevalence of previously unreported CNVs (Copy Number Variation).


Asunto(s)
Síndrome de Ellis-Van Creveld , Polidactilia , Humanos , Proteínas Hedgehog/genética , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Variaciones en el Número de Copia de ADN/genética , Fenotipo
5.
Am J Hum Genet ; 106(6): 779-792, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32413283

RESUMEN

The evolutionarily conserved hedgehog (Hh) pathway is essential for organogenesis and plays critical roles in postnatal tissue maintenance and renewal. A unique feature of the vertebrate Hh pathway is that signal transduction requires the primary cilium (PC) where major pathway components are dynamically enriched. These factors include smoothened (SMO) and patched, which constitute the core reception system for sonic hedgehog (SHH) as well as GLI transcription factors, the key mediators of the pathway. Here, we report bi-allelic loss-of-function variations in SMO in seven individuals from five independent families; these variations cause a wide phenotypic spectrum of developmental anomalies affecting the brain (hypothalamic hamartoma and microcephaly), heart (atrioventricular septal defect), skeleton (postaxial polydactyly, narrow chest, and shortening of long bones), and enteric nervous system (aganglionosis). Cells derived from affected individuals showed normal ciliogenesis but severely altered Hh-signal transduction as a result of either altered PC trafficking or abnormal activation of the pathway downstream of SMO. In addition, Hh-independent GLI2 accumulation at the PC tip in cells from the affected individuals suggests a potential function of SMO in regulating basal ciliary trafficking of GLI2 when the pathway is off. Thus, loss of SMO function results in abnormal PC dynamics of key components of the Hh signaling pathway and leads to a large continuum of malformations in humans.


Asunto(s)
Alelos , Discapacidades del Desarrollo/genética , Proteínas Hedgehog/metabolismo , Transducción de Señal , Receptor Smoothened/genética , Secuencia de Bases , Niño , Preescolar , Cilios/fisiología , Femenino , Humanos , Lactante , Masculino , Modelos Moleculares , Neoplasias/genética , Proteínas del Tejido Nervioso , Proteínas Nucleares , Linaje , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
6.
Hum Reprod ; 38(5): 992-1002, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36952633

RESUMEN

STUDY QUESTION: Does mitochondrial deficiency affect human embryonic preimplantation development? SUMMARY ANSWER: The presence of a pathogenic mitochondrial variant triggers changes in the gene expression of preimplantation human embryos, compromising their development, cell differentiation, and survival. WHAT IS KNOWN ALREADY: Quantitative and qualitative anomalies of mitochondrial DNA (mtDNA) are reportedly associated with impaired human embryonic development, but the underlying mechanisms remain unexplained. STUDY DESIGN, SIZE, DURATION: Taking advantage of the preimplantation genetic testing for mitochondrial disorders in at-risk couples, we have compared gene expression of 9 human embryos carrying pathogenic variants in either mtDNA genes or nuclear genes encoding mitochondrial protein to 33 age-matched control embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS: Single-embryo transcriptomic analysis was performed on whole human blastocyst embryos donated to research. MAIN RESULTS AND THE ROLE OF CHANCE: Specific pathogenic mitochondrial variants downregulate gene expression in preimplantation human embryos [566 genes in oxidative phosphorylation (OXPHOS)-deficient embryos], impacting transcriptional regulators, differentiation factors, and nuclear genes encoding mitochondrial proteins. These changes in gene expression primarily alter OXPHOS and cell survival pathways. LIMITATIONS, REASONS FOR CAUTION: The number of OXPHOS-deficient embryos available for the study was limited owing to the rarity of this material. However, the molecular signature shared by all these embryos supports the relevance of the findings. WIDER IMPLICATIONS OF THE FINDINGS: While identification of reliable markers of normal embryonic development is urgently needed in ART, our study prompts us to consider under-expression of the targeted genes reported here, as predictive biomarkers of mitochondrial dysfunction during preimplantation development. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the 'Association Française contre les Myopathies (AFM-Téléthon)' and the 'La Fondation Maladies Rares'. No competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Embrión de Mamíferos , Enfermedades Mitocondriales , Embarazo , Femenino , Humanos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , ADN Mitocondrial/genética , Blastocisto/metabolismo , Expresión Génica
7.
Hum Mol Genet ; 28(22): 3805-3814, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31600779

RESUMEN

We report for the first time an autosomal recessive inborn error of de novo purine synthesis (DNPS)-PAICS deficiency. We investigated two siblings from the Faroe Islands born with multiple malformations resulting in early neonatal death. Genetic analysis of affected individuals revealed a homozygous missense mutation in PAICS (c.158A>G; p.Lys53Arg) that affects the structure of the catalytic site of the bifunctional enzyme phosphoribosylaminoimidazole carboxylase (AIRC, EC 4.1.1.21)/phosphoribosylaminoimidazole succinocarboxamide synthetase (SAICARS, EC 6.3.2.6) (PAICS). The mutation reduced the catalytic activity of PAICS in heterozygous carrier and patient skin fibroblasts to approximately 50 and 10% of control levels, respectively. The catalytic activity of the corresponding recombinant enzyme protein carrying the mutation p.Lys53Arg expressed and purified from E. coli was reduced to approximately 25% of the wild-type enzyme. Similar to other two known DNPS defects-adenylosuccinate lyase deficiency and AICA-ribosiduria-the PAICS mutation prevented purinosome formation in the patient's skin fibroblasts, and this phenotype was corrected by transfection with the wild-type but not the mutated PAICS. Although aminoimidazole ribotide (AIR) and aminoimidazole riboside (AIr), the enzyme substrates that are predicted to accumulate in PAICS deficiency, were not detected in patient's fibroblasts, the cytotoxic effect of AIr on various cell lines was demonstrated. PAICS deficiency is a newly described disease that enhances our understanding of the DNPS pathway and should be considered in the diagnosis of families with recurrent spontaneous abortion or early neonatal death.


Asunto(s)
Carboxiliasas/genética , Péptido Sintasas/genética , Purinas/metabolismo , Anomalías Múltiples/genética , Adenilosuccinato Liasa/deficiencia , Trastorno Autístico , Carboxiliasas/metabolismo , Dinamarca , Resultado Fatal , Humanos , Recién Nacido , Masculino , Mutación , Péptido Sintasas/metabolismo , Muerte Perinatal , Fenotipo , Errores Innatos del Metabolismo de la Purina-Pirimidina , Purinas/biosíntesis
8.
Blood ; 134(1): 9-21, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-30940614

RESUMEN

Evans syndrome (ES) is a rare severe autoimmune disorder characterized by the combination of autoimmune hemolytic anemia and immune thrombocytopenia. In most cases, the underlying cause is unknown. We sought to identify genetic defects in pediatric ES (pES), based on a hypothesis of strong genetic determinism. In a national, prospective cohort of 203 patients with early-onset ES (median [range] age at last follow-up: 16.3 years ([1.2-41.0 years]) initiated in 2004, 80 nonselected consecutive individuals underwent genetic testing. The clinical data were analyzed as a function of the genetic findings. Fifty-two patients (65%) received a genetic diagnosis (the M+ group): 49 carried germline mutations and 3 carried somatic variants. Thirty-two (40%) had pathogenic mutations in 1 of 9 genes known to be involved in primary immunodeficiencies (TNFRSF6, CTLA4, STAT3, PIK3CD, CBL, ADAR1, LRBA, RAG1, and KRAS), whereas 20 patients (25%) carried probable pathogenic variants in 16 genes that had not previously been reported in the context of autoimmune disease. Lastly, no genetic abnormalities were found in the remaining 28 patients (35%, the M- group). The M+ group displayed more severe disease than the M- group, with a greater frequency of additional immunopathologic manifestations and a greater median number of lines of treatment. Six patients (all from the M+ group) died during the study. In conclusion, pES was potentially genetically determined in at least 65% of cases. Systematic, wide-ranging genetic screening should be offered in pES; the genetic findings have prognostic significance and may guide the choice of a targeted treatment.


Asunto(s)
Anemia Hemolítica Autoinmune/genética , Anemia Hemolítica Autoinmune/inmunología , Trombocitopenia/genética , Trombocitopenia/inmunología , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Mutación , Adulto Joven
9.
Am J Hum Genet ; 94(2): 288-94, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24439109

RESUMEN

Renal hypodysplasia (RHD) is a heterogeneous condition encompassing a spectrum of kidney development defects including renal agenesis, hypoplasia, and (cystic) dysplasia. Heterozygous mutations of several genes have been identified as genetic causes of RHD with various severity. However, these genes and mutations are not associated with bilateral renal agenesis, except for RET mutations, which could be involved in a few cases. The pathophysiological mechanisms leading to total absence of kidney development thus remain largely elusive. By using a whole-exome sequencing approach in families with several fetuses with bilateral renal agenesis, we identified recessive mutations in the integrin α8-encoding gene ITGA8 in two families. Itga8 homozygous knockout in mice is known to result in absence of kidney development. We provide evidence of a damaging effect of the human ITGA8 mutations. These results demonstrate that mutations of ITGA8 are a genetic cause of bilateral renal agenesis and that, at least in some cases, bilateral renal agenesis is an autosomal-recessive disease.


Asunto(s)
Anomalías Congénitas/genética , Genes Recesivos , Cadenas alfa de Integrinas/genética , Enfermedades Renales/congénito , Riñón/anomalías , Anomalías Urogenitales/genética , Anomalías Congénitas/patología , Femenino , Feto/anomalías , Homocigoto , Humanos , Cadenas alfa de Integrinas/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Masculino , Mutación , Linaje , Anomalías Urogenitales/patología
10.
Clin Immunol ; 168: 88-93, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27057999

RESUMEN

LRBA (lipopolysaccharide-responsive and beige-like anchor protein) deficiency associates immune deficiency, lymphoproliferation, and various organ-specific autoimmunity. To date, prevalent symptoms are autoimmune cytopenias and enteropathy, and lymphocytic interstitial lung disease. In 2 siblings from a consanguineous family presenting with early onset polyautoimmunity, we presumed autosomal recessive inheritance and performed whole exome sequencing. We herein report the first case of early-onset, severe, chronic polyarthritis associated with LRBA deficiency. A novel 1bp insertion in the LRBA gene, abolishing protein expression, was identified in this family. Among the 2 brothers homozygous for LRBA mutation, one developed Evans syndrome and deceased at age 8.5 from complications of severe autoimmune thrombocytopenia. His brother, who carried the same homozygous LRBA mutation, early-onset erosive polyarthritis associated with chronic, bilateral, anterior uveitis and early onset type 1 diabetes mellitus. This report widens the clinical spectrum of LRBA deficiency and, in lights of the variable phenotypes described so far, prompts us to screen for this disease in patients with multiple autoimmune symptoms in the family, including severe, erosive, polyarticular juvenile arthritis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Artritis/genética , Autoinmunidad/genética , Mutación , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adolescente , Artritis/complicaciones , Artritis/metabolismo , Preescolar , Enfermedad Crónica , Consanguinidad , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Exoma/genética , Salud de la Familia , Resultado Fatal , Femenino , Humanos , Immunoblotting , Masculino , Linaje , Análisis de Secuencia de ADN , Hermanos , Uveítis Anterior/complicaciones , Uveítis Anterior/genética , Uveítis Anterior/metabolismo
11.
J Clin Invest ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842935

RESUMEN

Proliferative glomerulonephritis is a severe condition often leading to kidney failure. There is a significant lack of effective treatment for these disorders. Here, following the identification of a somatic PIK3CA gain-of-function mutation in podocytes of a patient, we demonstrate using multiple genetically engineered mouse models, single-cell RNA sequencing and spatial transcriptomics the crucial role played by this pathway for proliferative glomerulonephritis development by promoting podocyte proliferation, dedifferentiation and inflammation. Additionally, we show that alpelisib, a PI3Kα inhibitor, improves glomerular lesions and kidney function in different mouse models of proliferative glomerulonephritis and lupus nephritis by targeting podocytes. Surprisingly, we determined that pharmacological inhibition of PI3Kα affects B and T lymphocyte population in lupus nephritis mouse models with decrease in the production of proinflammatory cytokines, autoantibodies and glomerular complement deposition, which are all characteristic features of PI3K delta (PI3Kδ) inhibition, the primary PI3K isoform expressed in lymphocytes. Importantly, PI3Kα inhibition does not impact lymphocyte function under normal conditions. These findings were then confirmed in human lymphocytes isolated from patients with active lupus nephritis. In conclusion, we demonstrate the major role played by PI3Kα in proliferative glomerulonephritis and show that in this condition, alpelisib acts on both podocytes and the immune system.

12.
Sci Transl Med ; 16(753): eadj1597, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924432

RESUMEN

Congenital pseudarthrosis of the tibia (CPT) is a severe pathology marked by spontaneous bone fractures that fail to heal, leading to fibrous nonunion. Half of patients with CPT are affected by the multisystemic genetic disorder neurofibromatosis type 1 (NF1) caused by mutations in the NF1 tumor suppressor gene, a negative regulator of RAS-mitogen-activated protein kinase (MAPK) signaling pathway. Here, we analyzed patients with CPT and Prss56-Nf1 knockout mice to elucidate the pathogenic mechanisms of CPT-related fibrous nonunion and explored a pharmacological approach to treat CPT. We identified NF1-deficient Schwann cells and skeletal stem/progenitor cells (SSPCs) in pathological periosteum as affected cell types driving fibrosis. Whereas NF1-deficient SSPCs adopted a fibrotic fate, NF1-deficient Schwann cells produced critical paracrine factors including transforming growth factor-ß and induced fibrotic differentiation of wild-type SSPCs. To counteract the elevated RAS-MAPK signaling in both NF1-deficient Schwann cells and SSPCs, we used MAPK kinase (MEK) and Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) inhibitors. Combined MEK-SHP2 inhibition in vivo prevented fibrous nonunion in the Prss56-Nf1 knockout mouse model, providing a promising therapeutic strategy for the treatment of fibrous nonunion in CPT.


Asunto(s)
Ratones Noqueados , Neurofibromina 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Seudoartrosis , Células de Schwann , Animales , Femenino , Humanos , Masculino , Ratones , Diferenciación Celular/efectos de los fármacos , Fibrosis , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neurofibromatosis 1/patología , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/complicaciones , Neurofibromina 1/metabolismo , Neurofibromina 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Seudoartrosis/patología , Seudoartrosis/metabolismo , Seudoartrosis/congénito , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/patología , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Tibia/patología
13.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36749641

RESUMEN

Acute kidney injury is one of the most important complications in patients with COVID-19 and is considered a negative prognostic factor with respect to patient survival. The occurrence of direct infection of the kidney by SARS-CoV-2, and its contribution to the renal deterioration process, remain controversial issues. By studying 32 renal biopsies from patients with COVID-19, we verified that the major pathological feature of COVID-19 is acute tubular injury (ATI). Using single-molecule fluorescence in situ hybridization, we showed that SARS-CoV-2 infected living renal cells and that infection, which paralleled renal angiotensin-converting enzyme 2 expression levels, was associated with increased death. Mechanistically, a transcriptomic analysis uncovered specific molecular signatures in SARS-CoV-2-infected kidneys as compared with healthy kidneys and non-COVID-19 ATI kidneys. On the other hand, we demonstrated that SARS-CoV-2 and hantavirus, 2 RNA viruses, activated different genetic networks despite triggering the same pathological lesions. Finally, we identified X-linked inhibitor of apoptosis-associated factor 1 as a critical target of SARS-CoV-2 infection. In conclusion, this study demonstrated that SARS-CoV-2 can directly infect living renal cells and identified specific druggable molecular targets that can potentially aid in the design of novel therapeutic strategies to preserve renal function in patients with COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/complicaciones , Hibridación Fluorescente in Situ , Riñón/patología , Biopsia
14.
Cell Rep Med ; 4(12): 101333, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118407

RESUMEN

Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-ß. Our data reveal a subset of disease-associated monocyte, expressing elevated CCL3, CCL4, and IL-6, as well as a strong integrated stress response, which we suggest is the result of direct PERK activation by STING. Cell-to-cell communication inference indicates that these monocytes lead to T cell early activation, resulting in their senescence and apoptosis. Last, we propose a transcriptomic signature of STING activation, independent of type I IFN response.


Asunto(s)
Interferón Tipo I , Enfermedades Vasculares , Humanos , Monocitos/metabolismo , Leucocitos Mononucleares/metabolismo , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo , Interferón Tipo I/metabolismo , ARN
15.
Genes (Basel) ; 12(2)2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670832

RESUMEN

Leber congenital amaurosis (LCA) encompasses the earliest and most severe retinal dystrophies and can occur as a non-syndromic or a syndromic disease. Molecular diagnosis in LCA is of particular importance in clinical decision-making and patient care since it can provide ocular and extraocular prognostics and identify patients eligible to develop gene-specific therapies. Routine high-throughput molecular testing in LCA yields 70%-80% of genetic diagnosis. In this study, we aimed to investigate the non-coding regions of one non-syndromic LCA gene, RPGRIP1, in a series of six families displaying one single disease allele after a gene-panel screening of 722 LCA families which identified 26 biallelic RPGRIP1 families. Using trio-based high-throughput whole locus sequencing (WLS) for second disease alleles, we identified a founder deep intronic mutation (NM_020366.3:c.1468-128T>G) in 3/6 families. We employed Sanger sequencing to search for the pathologic variant in unresolved LCA cases (106/722) and identified three additional families (two homozygous and one compound heterozygous with the NM_020366.3:c.930+77A>G deep intronic change). This makes the c.1468-128T>G the most frequent RPGRIP1 disease allele (8/60, 13%) in our cohort. Studying patient lymphoblasts, we show that the pathologic variant creates a donor splice-site and leads to the insertion of the pseudo-exon in the mRNA, which we were able to hamper using splice-switching antisense oligonucleotides (AONs), paving the way to therapies.


Asunto(s)
Proteínas del Citoesqueleto/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Amaurosis Congénita de Leber/genética , Distrofias Retinianas/genética , Adolescente , Adulto , Alelos , Niño , Preescolar , Análisis Mutacional de ADN , Exones , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Intrones/genética , Amaurosis Congénita de Leber/patología , Masculino , Mutación/genética , Patología Molecular , Linaje , Distrofias Retinianas/patología , Adulto Joven
16.
Nat Commun ; 12(1): 5044, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413298

RESUMEN

Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.


Asunto(s)
Mutación , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/genética , Ribosomas/patología , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patología , Adolescente , Adulto , Animales , Fenómenos Biológicos , Células Cultivadas , Niño , Preescolar , Dictyostelium , Drosophila , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Células Germinativas , Humanos , Lactante , Simulación de Dinámica Molecular , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Proteínas/genética , Proteínas/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Síndrome de Shwachman-Diamond/metabolismo , Adulto Joven
17.
Med ; 2(9): 1072-1092.e7, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34414385

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children is generally milder than in adults, but a proportion of cases result in hyperinflammatory conditions often including myocarditis. METHODS: To better understand these cases, we applied a multiparametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. Plasma cytokine and chemokine levels and blood cellular composition were measured, alongside gene expression at the bulk and single-cell levels. FINDINGS: The most severe forms of multisystem inflammatory syndrome in children (MIS-C) related to SARS-CoV-2 that resulted in myocarditis were characterized by elevated levels of pro-angiogenesis cytokines and several chemokines. Single-cell transcriptomics analyses identified a unique monocyte/dendritic cell gene signature that correlated with the occurrence of severe myocarditis characterized by sustained nuclear factor κB (NF-κB) activity and tumor necrosis factor alpha (TNF-α) signaling and associated with decreased gene expression of NF-κB inhibitors. We also found a weak response to type I and type II interferons, hyperinflammation, and response to oxidative stress related to increased HIF-1α and Vascular endothelial growth factor (VEGF) signaling. CONCLUSIONS: These results provide potential for a better understanding of disease pathophysiology. FUNDING: Agence National de la Recherche (Institut Hospitalo-Universitaire Imagine, grant ANR-10-IAHU-01; Recherche Hospitalo-Universitaire, grant ANR-18-RHUS-0010; Laboratoire d'Excellence ''Milieu Intérieur," grant ANR-10-LABX-69-01; ANR-flash Covid19 "AIROCovid" and "CoVarImm"), Institut National de la Santé et de la Recherche Médicale (INSERM), and the "URGENCE COVID-19" fundraising campaign of Institut Pasteur.


Asunto(s)
COVID-19 , Miocarditis , Adulto , COVID-19/complicaciones , Quimiocinas , Niño , Citocinas , Células Dendríticas , Humanos , Monocitos , FN-kappa B , SARS-CoV-2/genética , Síndrome de Respuesta Inflamatoria Sistémica , Factor A de Crecimiento Endotelial Vascular
18.
Front Genet ; 10: 1024, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749832

RESUMEN

Despite the astonishing progress in treating chronic hepatitis C virus (HCV) infection with direct-acting antiviral agents, liver fibrosis remains a major health concern in HCV infected patients, in particular due to the treatment cost and insufficient HCV screening in many countries. Only a fraction of patients with chronic HCV infection develop liver fibrosis. While there is evidence that host genetic factors are involved in the development of liver fibrosis, the common variants identified so far, in particular by genome-wide association studies, were found to have limited effects. Here, we conducted an exome association study in 88 highly selected HCV-infected patients with and without fibrosis. A strategy focusing on TGF-ß pathway genes revealed an enrichment in rare variants of the endoglin gene (ENG) in fibrosis patients. Replication studies in additional cohorts (617 patients) identified one specific ENG variant, Thr5Met, with an overall odds ratio for fibrosis development in carriers of 3.04 (1.39-6.69). Our results suggest that endoglin, a key player in TGF-ß signaling, is involved in HCV-related liver fibrogenesis.

19.
Sci Immunol ; 4(42)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836668

RESUMEN

Excessive type I interferon (IFNα/ß) activity is implicated in a spectrum of human disease, yet its direct role remains to be conclusively proven. We investigated two siblings with severe early-onset autoinflammatory disease and an elevated IFN signature. Whole-exome sequencing revealed a shared homozygous missense Arg148Trp variant in STAT2, a transcription factor that functions exclusively downstream of innate IFNs. Cells bearing STAT2R148W in homozygosity (but not heterozygosity) were hypersensitive to IFNα/ß, which manifest as prolonged Janus kinase-signal transducers and activators of transcription (STAT) signaling and transcriptional activation. We show that this gain of IFN activity results from the failure of mutant STAT2R148W to interact with ubiquitin-specific protease 18, a key STAT2-dependent negative regulator of IFNα/ß signaling. These observations reveal an essential in vivo function of STAT2 in the regulation of human IFNα/ß signaling, providing concrete evidence of the serious pathological consequences of unrestrained IFNα/ß activity and supporting efforts to target this pathway therapeutically in IFN-associated disease.


Asunto(s)
Enfermedades del Sistema Inmune/genética , Interferón Tipo I/inmunología , Factor de Transcripción STAT2/genética , Mutación de Línea Germinal , Humanos , Enfermedades del Sistema Inmune/inmunología , Lactante , Masculino , Transducción de Señal
20.
Cell Discov ; 4: 61, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30455981

RESUMEN

A loss-of-function mutation in tetratricopeptide repeat domain 7A (TTC7A) is a recently identified cause of human intestinal and immune disorders. However, clues to related underlying molecular dysfunctions remain elusive. It is now shown based on the study of TTC7A-deficient and wild-type cells that TTC7A is an essential nuclear protein. It binds to chromatin, preferentially at actively transcribed regions. Its depletion results in broad range of epigenomic changes at proximal and distal transcriptional regulatory elements and in altered control of the transcriptional program. Loss of WT_TTC7A induces general decrease in chromatin compaction, unbalanced cellular distribution of histones, higher nucleosome accessibility to nuclease digestion along with genome instability, and reduced cell viability. Our observations characterize for the first time unreported functions for TTC7A in the nucleus that exert a critical role in chromatin organization and gene regulation to safeguard healthy immune and intestinal status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA