Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gene Ther ; 31(9-10): 499-510, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39069560

RESUMEN

Gene therapy for CF has concentrated on targeting the lung. Here we took a different approach by injecting into the cephalic vein and spraying into the trachea of G551D, CF ferrets either AAV1 or 6 containing Δ27-264-CFTR, a truncated version of CFTR. Treatment with the potentiator VX-770 was halted for 7 days before instillation to induce a disease phenotype. Indeed, all ferrets were pancreas-insufficient when they entered the study. Four ferrets (three receiving AAV1 and one AAV6) were necropsied 48 days after vector delivery, and four (three receiving AAV6, one AAV1) were euthanized or died prior to the planned necropsy. AAV1 or AAV6 vector genomes, mRNA expression, and CFTR protein were detected in all tracheal and lung samples and in the liver, pancreas, and ileum of the treated ferrets. Surface and basal airway cells, pancreatic and bile ducts, and ileal crypts and villi were successfully transduced. Obstruction of the airways accompanied by pulmonary hemorrhaging, plugged pancreatic and bile ducts as well as mucous plugs in the ileum were noticed in untreated but absent from transduced ferrets necropsied at 48 days. Transduction of G551D ferrets suggests that a combination of systemic and airway application may be the preferred route of delivery for CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Dependovirus , Hurones , Terapia Genética , Vectores Genéticos , Animales , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Dependovirus/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/terapia , Fibrosis Quística/genética , Pulmón/metabolismo , Pulmón/patología , Modelos Animales de Enfermedad
2.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G404-G414, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36880660

RESUMEN

Systemic and portal hypertension, liver fibrosis, and hepatomegaly are manifestations associated with autosomal recessive polycystic kidney disease (ARPKD), which is caused by malfunctions of fibrocystin/polyductin (FPC). The goal is to understand how liver pathology occurs and to devise therapeutic strategies to treat it. We injected 5-day-old Pkhd1del3-4/del3-4 mice for 1 mo with the cystic fibrosis transmembrane conductance regulator (CFTR) modulator VX-809 designed to rescue processing and trafficking of CFTR folding mutants. We used immunostaining and immunofluorescence techniques to evaluate liver pathology. We assessed protein expression via Western blotting. We detected abnormal biliary ducts consistent with ductal plate abnormalities, as well as a greatly increased proliferation of cholangiocytes in the Pkhd1del3-4/del3-4 mice. CFTR was present in the apical membrane of cholangiocytes and increased in the Pkhd1del3-4/del3-4 mice, consistent with a role for apically located CFTR in enlarged bile ducts. Interestingly, we also found CFTR in the primary cilium, in association with polycystin (PC2). Localization of CFTR and PC2 and overall length of the cilia were increased in the Pkhd1del3-4/del3-4 mice. In addition, several of the heat shock proteins; 27, 70, and 90 were upregulated, suggesting that global changes in protein processing and trafficking had occurred. We found that a deficit of FPC leads to bile duct abnormalities, enhanced cholangiocyte proliferation, and misregulation of heat shock proteins, which all returned toward wild type (WT) values following VX-809 treatment. These data suggest that CFTR correctors can be useful as therapeutics for ARPKD. Given that these drugs are already approved for use in humans, they can be fast-tracked for clinical use.NEW & NOTEWORTHY ARPKD is a multiorgan genetic disorder resulting in newborn morbidity and mortality. There is a critical need for new therapies to treat this disease. We show that persistent cholangiocytes proliferation occurs in a mouse model of ARPKD along with mislocalized CFTR and misregulated heat shock proteins. We found that VX-809, a CFTR modulator, inhibits proliferation and limits bile duct malformation. The data provide a therapeutic pathway for strategies to treat ADPKD.


Asunto(s)
Riñón Poliquístico Autosómico Recesivo , Humanos , Ratones , Animales , Riñón Poliquístico Autosómico Recesivo/tratamiento farmacológico , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Receptores de Superficie Celular/metabolismo , Cirrosis Hepática/complicaciones , Proteínas de Choque Térmico/metabolismo
3.
Hum Gene Ther ; 34(21-22): 1135-1144, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37650819

RESUMEN

Cystic fibrosis (CF) is potentially treatable by gene therapy. Since the identification of the CF gene, preclinical and clinical trials have concentrated on achieving effective gene therapy targeting the lung. However, the lung has proven to be a formidable barrier to successful gene therapy especially for CF, and many clinical trials failed to achieve efficacy. Recent advances in vector design and adeno-associated virus (AAV) serotypes have increased the chances of success. Given that CF is a multi-organ disease, the goal of this study was to test whether a gene therapy approach involving AAV1 or AAV6 vector delivery via the systemic circulation would at the same time overcome the barrier of lung delivery and transduce organs commonly affected by CF. To accomplish this, we sprayed AAV1 containing green fluorescent protein (GFP) into the trachea or injected it intravenously (IV). We also tested AAV6 injected IV. No adverse events were noted. Ferrets were necropsied 30 days after vector delivery. AAV1 or AAV6 vector genomes, messenger RNA (mRNA) expression, and GFP were detected in all the tracheal and lung samples from the treated animals, whether AAV1 was sprayed into the trachea or injected IV or AAV6 was injected IV. Importantly, both surface epithelial and basal cells of the trachea and lung airways were successfully transduced, regardless of which route of delivery or vector serotype used for transduction. We detected also AAV1 and AAV6 vector genomes, mRNA expression, and GFP in the livers and pancreases, particularly in the acinar cells of the pancreatic duct. These data suggest that gene transfer is attainable in the airways, liver, and pancreas using either serotype, AAV1 or AAV6. Given that these same organs are affected in CF, systemic delivery of AAV may be the preferred route of delivery for a gene therapy for CF.


Asunto(s)
Fibrosis Quística , Hurones , Animales , Hurones/genética , Dependovirus/genética , Pulmón , Hígado , Páncreas , ARN Mensajero , Vectores Genéticos/genética , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA