Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Langmuir ; 39(31): 10779-10787, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498111

RESUMEN

Antireflective (AR) films are widely applied in solar cells to reduce the reflectivity toward sunlight, thus improving the photoelectric conversion efficiency (PCE) of solar cells. However, AR films are still suffering from poor mechanical properties and low transmittance in photovoltaic applications. Herein, a ZrO2-SiO2 composite film with enhanced mechanical properties was successfully synthesized by a facile sol-gel method, whose pencil hardness increased from less than 6B to B compared with the pure SiO2 film synthesized with the same alkali-catalyzed method. Moreover, the ZrO2-SiO2 film with a Zr/Si mole ratio (nZr/Si) of 0.06 exhibited a high transmittance gain (ΔT) of 3.0%, and an obvious increase (1.32%) in PCE was observed in a perovskite solar cell compared with the cell covered by a bare glass. Additionally, both the short-circuit current density (JSC) and PCE of perovskite solar cells have a non-linear increasing relationship with the average transmittance (Tavg) of the ZrO2-SiO2 composite film. In this sense, this work can provide a facile way to prepare AR films effectively improving performances of solar cells.

2.
Phys Chem Chem Phys ; 23(29): 15420-15439, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34263272

RESUMEN

Two-dimensional (2D) materials have shown great potential for gas sensing applications due to their large specific surface areas and strong surface activities. In addition to the commonly reported chemiresistive-type gas sensors, field-effect transistor (FET)-type gas sensors have attracted increased attention due to their miniaturized size, low power consumption, and good compatibility with CMOS technology. In this review, we aim to discuss the recent developments in chemiresistive- and FET-type gas sensors based on 2D materials, including graphene, transition metal dichalcogenides, MXenes, black phosphorene, and other layered materials. Firstly, the device structure and the corresponding fabrication process of the two types of sensors are given, and then the advantages and disadvantages are also discussed. Secondly, the effects of intrinsic and extrinsic factors on the sensing performance of 2D material-based chemiresistive and FET-type gas sensors are also detailed. Subsequently, the current gas-sensing applications of 2D material-based chemiresistive- and FET-type gas sensors are systematically presented. Finally, the future prospects of 2D materials in chemiresistive- and FET-type gas sensing applications as well as the current existing problems are pointed out, which could be helpful for the development of 2D material-based gas sensors with better sensing performance to meet the requirements for practical application.

3.
Macromol Rapid Commun ; 41(6): e1900573, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32022971

RESUMEN

Nanocomposite hydrogels (NCs) with mechanical properties suitable for a diverse range of applications can be made by combining polymer hydrogel networks with various inorganic nanoparticles. However, the mechanical properties and functions of conventional NCs are seriously limited by the poor structural or functional tunability of common nanofillers and by the low amounts of such fillers that can be added. Here, the fabrication of novel elastically stretchable and compressible nanocomposite hydrogels (MIL-101-MAAm/PAAm) with a distinctive pearl-net microstructure and a metal-organic framework (MOF) content in the range of 20-60 wt% through post-synthetic polymerization (PSP) is reported. The MOFs, which are compatible with polymers and have a high degree of modifiability in structure and functions, are used as nanofillers. Such MOF-laden hydrogels can withstand 500% tensile strain or 90% compressive strain without fracture and recover quickly upon unloading. They are also resistant to freezing at -25 °C. In addition, the problems associated with poor flexibility and processability of MOFs are overcome by the hybridization of hydrogel polymer matrices with MOFs. The results of this work not only provide a new perspective on preparing NCs but also indicate a promising path for applying MOFs in flexible devices.


Asunto(s)
Hidrogeles/química , Estructuras Metalorgánicas/química , Nanocompuestos/química , Nanopartículas/química , Polímeros/síntesis química , Elasticidad , Congelación , Hidrogeles/síntesis química , Ensayo de Materiales , Estructuras Metalorgánicas/síntesis química , Estructuras Metalorgánicas/ultraestructura , Nanocompuestos/ultraestructura , Nanopartículas/ultraestructura , Polimerizacion , Polímeros/química , Temperatura
4.
Small ; 15(10): e1804559, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30714294

RESUMEN

Flexible pressure sensors as electronic skins have attracted wide attention to their potential applications for healthcare and intelligent robotics. However, the tradeoff between their sensitivity and pressure range restricts their practical applications in various healthcare fields. Herein, a cost-effective flexible pressure sensor with an ultrahigh sensitivity over an ultrawide pressure-range is developed by combining a sandpaper-molded multilevel microstructured polydimethylsiloxane and a reduced oxide graphene film. The unique multilevel microstructure via a two-step sandpaper-molding method leads to an ultrahigh sensitivity (2.5-1051 kPa-1 ) and can detect subtle and large pressure over an ultrawide range (0.01-400 kPa), which covers the overall pressure regime in daily life. Sharp increases in the contact area and additional contact sites caused by the multilevel microstructures jointly contribute to such unprecedented performance, which is confirmed by in situ observation of the gap variations and the contact states of the sensor under different pressures. Examples of the flexible pressure sensors are shown in potential applications involving the detection of various human physiological signals, such as breathing rate, vocal-cord vibration, heart rate, wrist pulse, and foot plantar pressure. Another object manipulation application is also demonstrated, where the material shows its great potential as electronic skin intelligent robotics and prosthetic limbs.


Asunto(s)
Técnicas Biosensibles/métodos , Dispositivos Electrónicos Vestibles , Grafito , Presión
5.
Langmuir ; 35(9): 3248-3255, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30759983

RESUMEN

The detection of trace amount of volatile organic compounds (VOCs) has been covered by tons of researches, which are dedicated to improve the detection limit and insensitivity to humidity. In this work, we have synthesized ZnO@ZIF-71 nanorod arrays (NRAs) equipped with the adsorption effect at metal site that promoted the detection limit of ethanol and acetone, to which also have great selectivity. The gas sensor not only exhibits shorter response/recovery time (53/55% for ethanol, 48/31% for acetone), but also excellent insensitivity to humidity and improved detection limit (10× improved at 21 ppb for ethanol, 4× at 3 ppb for acetone) at low working temperature (150 °C). By the analysis of in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and calculation of density functional theory (DFT), the mechanism of enhanced gas sensing performance from ZnO@ZIF-71 NRAs is proved. It shows ethanol and acetone gas molecules can be adsorbed at the metal sites of ZIF-71. This work provides a new idea to improve the detection limit and humidity-insensitivity of gas sensor toward specific gas molecules.

6.
Langmuir ; 34(48): 14577-14585, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30423250

RESUMEN

In this work, we report a metal-organic framework (MOF)-assisted strategy to synthesize necklace-like TiO2/Co3O4 nanofibers with highly ordered heterostructures via a facile approach including electrospinning and subsequent calcination. Polycrystalline TiO2 nanofibers and Co3O4 nanocages are consummately interconnected to form a highly ordered heterogeneous nanostructure, which can be of benefit for precisely accommodating the interface resistance of the p-n heterojunctions and the future realization of improved material performance. The ethanol-gas-sensing investigation showed that TiO2/Co3O4 nanofiber sensors exhibited a strong ethanol response ( Rair/ Rgas -1 = 16.7 @ 150 ppm) and a low operating temperature of 150 °C. The sensing enhancement mechanism of the TiO2/Co3O4 nanofibers is related to the formation of heterojunctions at interfaces and the high catalytic activity of MOF-derived Co3O4. Furthermore, this versatile method is a promising approach to constructing ordered heterostructures and extending the MOF-based heterogeneous materials toward wide applications.

7.
Phys Chem Chem Phys ; 19(9): 6313-6329, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28198897

RESUMEN

Metal-oxide-semiconductor (MOS) based gas sensors have been considered a promising candidate for gas detection over the past few years. However, the sensing properties of MOS-based gas sensors also need to be further enhanced to satisfy the higher requirements for specific applications, such as medical diagnosis based on human breath, gas detection in harsh environments, etc. In these fields, excellent selectivity, low power consumption, a fast response/recovery rate, low humidity dependence and a low limit of detection concentration should be fulfilled simultaneously, which pose great challenges to the MOS-based gas sensors. Recently, in order to improve the sensing performances of MOS-based gas sensors, more and more researchers have carried out extensive research from theory to practice. For a similar purpose, on the basis of the whole fabrication process of gas sensors, this review gives a presentation of the important role of screening and the recent developments in high throughput screening. Subsequently, together with the sensing mechanism, the factors influencing the sensing properties of MOSs involved in material preparation processes were also discussed in detail. It was concluded that the sensing properties of MOSs not only depend on the morphological structure (particle size, morphology, pore size, etc.), but also rely on the defect structure and heterointerface structure (grain boundaries, heterointerfaces, defect concentrations, etc.). Therefore, the material-sensor integration was also introduced to maintain the structural stability in the sensor fabrication process, ensuring the sensing stability of MOS-based gas sensors. Finally, the perspectives of the MOS-based gas sensors in the aspects of fundamental research and the improvements in the sensing properties are pointed out.

8.
Phys Chem Chem Phys ; 19(16): 10695-10697, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-27352959

RESUMEN

Correction for 'Enhanced room temperature NO2 response of NiO-SnO2 nanocomposites induced by interface bonds at the p-n heterojunction' by Jian Zhang et al., Phys. Chem. Chem. Phys., 2016, 18, 5386-5396.

9.
Phys Chem Chem Phys ; 18(7): 5386-96, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26818788

RESUMEN

Recently, heterostructured nanomaterials have attracted great attention in gas sensing applications. However, the sensing mechanism of the enhanced sensitivity of heterostructured nanomaterials remains unclear, which is not conducive to further improvements in their sensing performances. In order to detail the fundamental studies on the gas sensing mechanism of heterostructured nanomaterials and improve the room temperature NO2 sensing properties of NiO-based nanomaterials, NiO-SnO2 heterojunction nanocomposites were fabricated. It was found that the sensitivity of the nanocomposites was largely enhanced compared to the bare NiO. On the basis of the intrinsic characteristics of the p-n heterojunction and the band structure of the NiO-SnO2 heterojunction, the largely enhanced room temperature NO2 response of the nanocomposites could be attributed to two factors. One was the significantly decreased initial conductance, and the increase in the equivalent hole concentration of the nanocomposites after exposure to NO2, associated with the effective electron transfer via the interface bonds at the heterojunction. Another was that the variation of contact potential in the nanocomposites, before and after exposure to NO2, exerted a drastic effect on the transducer function for gas sensing. According to the differentiation in the sensitivity of the nanocomposites with different molar ratios, the important role of interface bonds in gas sensing properties was further illustrated by the dependency of the sensitivity on the interface bond number and the interface resistance. Here, we hope that this work could give us a better understanding of the gas sensing mechanism of the p-n heterojunction, and provide a proper approach for heterojunction materials to further improve their sensing performances.

10.
Phys Chem Chem Phys ; 17(41): 27437-45, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26421631

RESUMEN

Lowering the working temperature without sacrificing other good gas-sensing properties is of particular interest to gas sensors for an excellent performance. In this work, La surface doped ZnO nanocrystals were successfully prepared by a facile thermal treatment with lanthanum nitrate (La(NO3)3) solution injected into ZnO thick films, which exhibited a remarkable decrease in the optimal working temperature for formaldehyde (HCHO) sensing properties. This was probably attributed to the formation of surface LaZn defects in the ZnO nanocrystals which was evidenced by XRD, XPS results and DFT calculations. The surface LaZn defects can introduce a shallower donor level than oxygen vacancies, and probably facilitate the charge transfer from oxygen species to ZnO for producing chemisorbed oxygen species more easily. This was in good agreement with the DFT results that the absorption energy of oxygen molecules on the surface of La doped ZnO was only -10.61 eV, much lower than that of pure ZnO. Moreover, the optimal working temperature of the La doped ZnO based sensor was significantly decreased from 350 to 250 °C without sacrificing the high and quick response to HCHO gas as the content of surface LaZn defects was increased gradually. Therefore, the behavior of the surface LaZn defects in the optimal working temperature revealed a HCHO response mechanism in ZnO, which can provide new insights into the enhanced HCHO sensing performance of gas sensors.

11.
Phys Chem Chem Phys ; 17(22): 14903-11, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25982556

RESUMEN

In recent years, there has been increasing interest in synthesis of reduced graphene oxide (rGO)-metal oxide semiconductor (MOS) nanocomposites for room temperature gas sensing applications. Generally, the sensitivity of a MOS can be obviously enhanced by the incorporation of rGO. However, a lack of knowledge regarding how rGO can enhance gas-sensing performances of MOSs impedes its sensing applications. Herein, in order to get an insight into the sensing mechanism of rGO-MOS nanocomposites and further improve the sensing performances of NiO-based sensors at room temperature, an rGO-NiO nanocomposite was synthesized. Through a comparison study on room temperature NO2 sensing of rGO-NiO and pristine NiO, an inverse gas-sensing behavior in different NO2 concentration ranges was observed and the sensitivity of rGO-NiO was enhanced obviously in the high concentration range (7-60 ppm). Significantly, the stimulating effect of rGO on the recovery rate was confirmed by the sensing characteristics of rGO-NiO that was advantageous for the development of NO2 sensors at room temperature. By comprehending the electronic interactions between the rGO-MOS nanocomposite and the target gas, this work may open up new possibilities for further improvement of graphene-based hybrid materials with even higher sensing performances.

12.
Langmuir ; 30(37): 11183-9, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25162977

RESUMEN

The formation mechanism of SnO2 nanotubes (NTs) fabricated by generic electrospinning and calcining was revealed by systematically investigating the structural evolution of calcined fibers, product composition, and released volatile byproducts. The structural evolution of the fibers proceeded sequentially from dense fiber to wire-in-tube to nanotube. This remarkable structural evolution indicated a disparate thermal decomposition of poly(vinylpyrrolidone) (PVP) in the interior and the surface of the fibers. PVP on the surface of the outer fibers decomposed completely at a lower temperature (<340 °C), due to exposure to oxygen, and SnO2 crystallized and formed a shell on the fiber. Interior PVP of the fiber was prone to loss of side substituents due to the oxygen-deficient decomposition, leaving only the carbon main chain. The rest of the Sn crystallized when the pores formed resulting from the aggregation of SnO2 nanocrystals in the shell. The residual carbon chain did not decompose completely at temperatures less than 550 °C. We proposed a PVP-assisted Ostwald ripening mechanism for the formation of SnO2 NTs. This work directs the fabrication of diverse nanostructure metal oxide by generic electrospinning method.

13.
Phys Chem Chem Phys ; 16(39): 21349-55, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25179434

RESUMEN

First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation.

14.
Materials (Basel) ; 17(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473480

RESUMEN

Graphene-wrapped ZnO nanocomposites were fabricated by a simple solvothermal technology with a one-pot route. The structure and morphology of these as-fabricated samples were systematically characterized. The adding of graphene enhanced the content of the oxygen vacancy defect of the sample. All gas-sensing performances of sensors based on as-prepared samples were thoroughly studied. Sensors displayed an ultrahigh response and exceptional selectivity at room temperature under blue light irradiation. This excellent and enhanced toluene gas-sensing property was principally attributed to the synergistic impacts of the oxygen vacancy defect and the wrapped graphene in the composite sensor. The photo-activated graphene-wrapped ZnO sensor illustrated potential application in the practical detection of low concentrations of toluene under explosive environments.

15.
Talanta ; 276: 126208, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718651

RESUMEN

NO2 is a hazardous gas extremely harmful to the ecosystem and human health, so effective detection of NO2 is critical. SnSe2 is a promising candidate for gas sensors owing to its unique layered configuration that facilitates the diffusion of gas molecules. Here, ultrathin self-assembled nanoflowers F-SnSe2 rich in defects were synthesized by a simple solvothermal method. It exhibits excellent gas sensing performances for NO2 at room temperature (25 °C), with a high gas sensing response of 8.6 for 1 ppm NO2 and a lower detection limit as low as 200 ppb, capable of sensitively detecting ppb-level NO2. DFT calculations revealed that the presence of Se vacancies assists the central Sn atoms to break through the shielding effect of the surface Se atoms and become exposed active sites. The higher reactivity leads to more charge transfer and higher adsorption energy, which strongly promoted the adsorption of NO2. This work verifies the important role of vacancies for the exposed active sites and provides new guidance for defect engineering to modulate the gas sensing performances of SnSe2.

16.
ACS Sens ; 9(1): 444-454, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38196203

RESUMEN

It is well-known that metal-oxide semiconductors (MOS) have significant gas sensing activity and are widely used in harmful gas monitoring in various environments. With the rapid development of new energy vehicles, the monitoring of the gas composition and concentration in LIB has become an effective way to avoid safety problems. However, the study of typical electrolyte solvent detection, such as EMC and DMC detection by the MOS sensor, is still in its infancy. Here, the SnO2 nanoboxes are synthesized by coordination dissolution using cubic Cu2O as the template, and its sensor shows high sensitivity (0.27 to 10 ppb EMC), excellent response (32.46 to 20 ppm EMC), and superior selectivity. Additionally, the sensor possesses fast and clear response to lithium-ion battery (LIB) leakage simulation tests, suggesting that it should be a promising candidate for LIB safety monitors. These sensing performances are attributed to large specific surface area, small grain size, and high size/thickness ratio of nanoboxes. More importantly, DFT calculations confirm the adsorption of EMC on the surface of the SnO2 nanoboxes, and the EMC decomposition processes catalyzed by SnO2 are deduced by in situ FTIR and GC-MS.


Asunto(s)
Formiatos , Litio , Iones , Adsorción , Óxidos
17.
ACS Sens ; 9(1): 283-291, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38215040

RESUMEN

Developing gas sensors capable of efficiently detecting harmful gases is urgent to protect the human environment. Here, an active Ce-Ag bimetallic pair was innovatively introduced into SnS2, which successfully exhibited excellent NO2 gas sensing performance. 0.8% Ce-SnS2-Ag showed a gas sensing response of 5.18 to 1 ppm of NO2 at a low temperature of 80 °C, with a lower limit of detection as low as 100 ppb. DFT calculations revealed that Ce atoms are substituted into the main lattice of SnS2, which opens up the interlayer spacing and serves as an anchor point to fix the Ag atoms in the interlayer. The Ce-Ag bimetallic pairs successfully modulate the electronic structure of SnS2, which promotes the adsorption and charge transfer between NO2 and Ce-SnS2-Ag and thus achieves such an outstanding gas sensing performance. This work opens an avenue for the rational functional modification of SnS2 with an optimized electronic structure and enhanced gas sensing.


Asunto(s)
Frío , Dióxido de Nitrógeno , Humanos , Adsorción , Teoría Funcional de la Densidad , Electrónica , Gases
18.
Phys Chem Chem Phys ; 15(44): 19387-94, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24121901

RESUMEN

A BiOCl-Bi2WO6 heterojunction with a chemically bonded interface was synthesized via a facile one-step solvothermal method. A series of characterization techniques (XRD, XPS, TEM, SEM, EDS etc.) confirmed the existence of a BiOCl-Bi2WO6 interface. The heterojunction yielded a higher photodegradation rate of Rhodamine B under visible light irradiation compared to its individual components. Theoretical studies based on density functional theory calculations indicated that the enhanced photosensitized degradation activity could be attributed to the favorable band offsets across the BiI-O-BiII bonded interface, leading to efficient interfacial charge carrier transfer. Our results reveal the photosensitized mechanism of BiOCl-Bi2WO6 heterojunctions and demonstrate their practical use as visible-light-driven photocatalytic materials.

19.
ACS Sens ; 8(4): 1700-1709, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37005557

RESUMEN

The problems of lithium-ion battery (LIB) failure have attracted growing attention since flammable and explosive electrolyte leakage might lead to serious consequences. However, due to the redox-neutral and volatile nature of main electrolyte components, such as dimethyl carbonate (DMC), trace leakages are difficult to detect. Therefore, research on LIB electrolyte sensors is urgent and lacking. Herein, sensors based on rare-earth Nd-doped SnO2 nanofibers are reported for detecting DMC vapor in LIB. The excellent sensitivity (distinct response to 20 ppb DMC), high response (∼38.13-50 ppm DMC), and superior selectivity and stability of 3%Nd-SnO2 suggest that it should be a promising candidate for LIB safety monitors. Meanwhile, it also shows clear and rapid response during the LIB-leakage real-time detection experiment. The doping of Nd endows SnO2 with more oxygen vacancy defects. In addition, the highly active Nd sites greatly enhanced the adsorption energy of DMC on SnO2. All of these features contribute to the improvement of DMC-sensing performances.


Asunto(s)
Metales de Tierras Raras , Nanofibras , Litio , Electrólitos , Iones
20.
ACS Sens ; 8(10): 3923-3932, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37823841

RESUMEN

Although two-dimensional (2D) transition-metal dichalcogenides (TMDs) exhibit attractive prospects for gas-sensing applications, the rapid and precise sensing of TMDs at low loss remains challenging. Herein, a NO2 sensor based on an expanded VS2 (VS2-E)/carbon nanofibers (CNFs) composite (abbreviated as VS2-E-C) with ultrafast response/recovery at a low-loss state is reported. In particular, the impact of the CNF content on the NO2-sensing performance of VS2-E-C was thoroughly explored. Expanded VS2 nanosheets were grafted onto the surface of hollow CNFs, and the combination boosted the charge transport, exposing abundant active edges of VS2, which enhanced the adsorption of NO2 efficiently. The activity of the VS2 edge is further confirmed by stronger NO2 adsorption with a more negative adsorption energy (-3.42 eV) and greater than the basal VS2 surface (-1.26 eV). Moreover, the exposure of rich edges induced the emergence of the expanded interlayers, which promoted the adsorption/desorption of NO2 and the interaction of gas molecules within VS2-E-C. The synergism of edge effect and interlayer engineering confers the VS2-E-C3 sensor with ultrafast response/recovery speed (9/10 s) at 60 °C, high sensitivity (∼2.50 to 15 ppm NO2), good selectivity/stability, and a low detection limit of 23 ppb. The excellent "4S" functions indicate the promising prospect of the VS2-E-C3 sensor for fast and precise NO2 detection at low-loss condition.


Asunto(s)
Nanofibras , Dióxido de Nitrógeno , Adsorción , Carbono , Ingeniería
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA