Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 143: 107022, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142558

RESUMEN

Liver fibrosis remains a global health challenge due to its rapidly rising prevalence and limited treatment options. The orphan nuclear receptor Nur77 has been implicated in regulation of autophagy and liver fibrosis. Targeting Nur77-mediated autophagic flux may thus be a new promising strategy against hepatic fibrosis. In this study, we synthesized four types of Nur77-based thiourea derivatives to determine their anti-hepatic fibrosis activity. Among the synthesized thiourea derivatives, 9e was the most potent inhibitor of hepatic stellate cells (HSCs) proliferation and activation. This compound could directly bind to Nur77 and inhibit TGF-ß1-induced α-SMA and COLA1 expression in a Nur77-dependent manner. In vivo, 9e significantly reduced CCl4-mediated hepatic inflammation response and extracellular matrix (ECM) production, revealing that 9e is capable of blocking the progression of hepatic fibrosis. Mechanistically, 9e induced Nur77 expression and enhanced autophagic flux by inhibiting the mTORC1 signaling pathway in vitro and in vivo. Thus, the Nur77-targeted lead 9e may serve as a promising candidate for treatment of chronic liver fibrosis.


Asunto(s)
Antifibróticos , Tiosemicarbazonas , Humanos , Tiosemicarbazonas/metabolismo , Células Estrelladas Hepáticas , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Tiourea/metabolismo , Tetracloruro de Carbono
2.
Bioorg Chem ; 140: 106795, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37657195

RESUMEN

Hepatic fibrosis remains a great challenge clinically. The orphan nuclear receptor Nur77 is recently suggested as the critical regulator of transforming growth factor-ß (TGF-ß) signaling, which plays a central role in multi-organic fibrosis. Herein, we optimized our previously reported Nur77-targeted compound 9 h for attempting to develop effective and safe anti-hepatic fibrosis agents. The critical pharmacophore scaffold of pyridine-carbonyl-hydrazine-1-carboxamide was retained, while the naphthalene ring was replaced with an aromatic ring containing pyridyl or indole groups. Four series of derivatives were thus generated, among which the compound 16f had excellent binding activity toward Nur77-LBD (KD = 470 nM) with the best inhibitory activity against the TGF- ß 1 activation of hepatic stellate cells (HSCs) and low cytotoxicity to normal mice liver AML-12 cells (IC50 > 80 µM). In mice, 16f displayed potent activity against CCl4-induced liver fibrosis with improved liver function. Mechanistically, 16f-mediated inactivation of HSC and suppression of liver fibrosis were associated with its enhancement of autophagic flux in a Nur77-dependent manner. Together, 16f was identified as a potential anti-liver fibrosis agent. Our study suggests that Nur77 may serve as a critical anti-hepatic fibrosis target.


Asunto(s)
Anticonvulsivantes , Cirrosis Hepática , Animales , Ratones , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Antifibróticos , Autofagia , Células Estrelladas Hepáticas
3.
Bioorg Chem ; 113: 105008, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089944

RESUMEN

We previously reported 5-((8-methoxy-2-methylquinolin-4-yl)amino)-1H-indole- 2-carbohydrazide derivatives as new Nur77 modulators. In this study, we explored whether the 8-methoxy-2-methylquinoline moiety and bicyclic aromatic rings at the N'-methylene position were critical for their antitumor activity against hepatocellular carcinoma (HCC). For this purpose, a small library of 5-substituted 1H-indole-2-carbohydrazide derivatives was designed and synthesized. We found that the 8-methoxy-2-methylquinoline moiety was a fundamental structure for its biological function, while the introduction of the bicyclic aromatic ring into the N'-methylene greatly improved its anti-tumor effect. We found that the representative compound 10E had a high affinity to Nur77. The KD values were in the low micromolar (2.25-4.10 µM), which were coincident with its IC50 values against the tumor cell lines (IC50 < 3.78 µM). Compound 10E could induce autophagic cell death of liver cancer cells by targeting Nur77 to mitochondria while knocking down Nur77 greatly impaired anti-tumor effect. These findings provide an insight into the structure-activity relation of Quinoline-Indole-Schiff base derivatives and further demonstrate that antitumor agents targeting Nur77 may be considered as a promising strategy for HCC therapy.


Asunto(s)
Antineoplásicos/síntesis química , Muerte Celular Autofágica/efectos de los fármacos , Indoles/química , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Quinolinas/química , Bases de Schiff/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/química , Relación Estructura-Actividad
4.
Molecules ; 24(13)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277214

RESUMEN

Ginseng is a group of cosmopolitan plants with more than a dozen species belonging to the genus Panax in the family Araliaceae that has a long history of use in traditional Chinese medicine (TCM). Among the bioactive constituents extracted from ginseng, ginseng saponins are a group of natural steroid glycosides and triterpene saponins found exclusively throughout the plant. Studies have shown that these ginseng saponins play a significant role in exerting multiple therapeutic effects. This review covers their chemical structure and classification, as well as their pharmacological activities, including their regulatory effects on immunomodulation, their anticancer effects, and their functions in the central nervous and cardiovascular systems. The general benefits of ginseng saponins for boosting physical vitality and improving quality of life are also discussed. The review concludes with fruitful directions for future research in the use of ginseng saponins as effective therapeutic agents.


Asunto(s)
Panax/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Saponinas/química , Saponinas/farmacología , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Carbohidratos/química , Sistema Nervioso Central/efectos de los fármacos , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Estructura Molecular , Relación Estructura-Actividad
5.
Molecules ; 21(5)2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27164070

RESUMEN

In this study, a series of novel N-substituted 2-(2-(adamantan-1-yl)-1H-indol-3-yl)-2-oxoacetamide derivatives were synthesized, and evaluated for their cytotoxicity in human cell lines including Hela (cervical cancer), MCF7 (breast cancer ) and HepG2 (liver cancer). Several compounds were found to have potent anti-proliferative activity against those human cancer cell lines and compound 5r showed the most potent biological activity against HepG2 cells with an IC50 value of 10.56 ± 1.14 µΜ. In addition, bioassays showed that compound 5r induced time-dependent and dose-dependent cleavage of poly ADP-ribose polymerase (PARP), and also induced a dose-dependent increase in caspase-3 and caspase-8 activity, but had little effect on caspase-9 protease activity in HepG2 cells. These results provide evidence that 5r-induced apoptosis in HepG2 cell is caspase-8-dependent.


Asunto(s)
Acetamidas/síntesis química , Acetamidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Acetamidas/química , Antineoplásicos/química , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Estructura Molecular , Poli(ADP-Ribosa) Polimerasas/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 40(15): 2999-3004, 2015 Aug.
Artículo en Zh | MEDLINE | ID: mdl-26677700

RESUMEN

This article studied the chemical constituents from the aerial part of Vitis thunbergii var. taiwaniana. The 60% ethanol extract was eluted with 95% ethanol though HP-20 macroporous adsorption resin column. 12 compounds, including (1) betulinic acid, (2)2, 2, 2'-bis (4-hydroxyphenyl) propane bis (2, 3-epoxypropyl) ether, (3) eriodictyol, (4) trans-ε-viniferin, (5) (+)-cis-ε-viniferin, (6) kobophenol A, (7) ampelopsin A, (8) nepalensinol B, (9) cis-miyabenol C, (10) cis-vitisin B, (11) cis-gnetin H and (12) (+)-hopeaphenol, were separated by using normal phase silica gel, ODS, Sephdadex LH-20 column chromatographies and semi-preparative or preparative HPLC. Compounds 2, 5, 6, 8, 9, 10, 11 were separated from the genus Vitis for the first time and compounds 3, 7, 12 were separated from Vitis thunbergii var. taiwaniana for the first time. At a concentration of 50 µmol · L(-1), compound 6, 7 and 11 showed strong cytotoxicity against MCF-7 cell lines with the inhibition rate of 66.58%, 57.16%, 52.84%, respectively.


Asunto(s)
Vitis/química , Antineoplásicos Fitogénicos/farmacología , Humanos , Células MCF-7 , Extractos Vegetales/análisis , Extractos Vegetales/farmacología
7.
Anal Chem ; 86(11): 5232-7, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24823627

RESUMEN

Mitochondria play a pivotal role in determining the point-of-no-return of the apoptotic process. Therefore, anticancer drugs that directly target mitochondria hold great potential to evade resistance mechanisms that have developed toward conventional chemotherapeutics. In this study, we report the development of an in vitro strategy to quickly identify the therapeutic agents that induce apoptosis via directly affecting mitochondria. This result is achieved by treating isolated mitochondria with potential anticancer compounds, followed by simultaneously measuring the side scatter and mitochondrial membrane potential (Δψ(m)) fluorescence of individual mitochondria using a laboratory-built high-sensitivity flow cytometer. The feasibility of this method was tested with eight widely used anticarcinogens. Dose-dependent Δψ(m) losses were observed for paclitaxel, antimycin A, betulinic acid, curcumin, ABT-737, and triptolide, but not for cisplatin or actinomycin D, which agrees well with their mechanisms of apoptosis induction reported in the literature. The as-developed method offers an effective approach to identify mitochondria-targeting anticancer compounds.


Asunto(s)
Antineoplásicos/farmacología , Mitocondrias/efectos de los fármacos , Apoptosis/efectos de los fármacos , Citocromos c/metabolismo , Resistencia a Antineoplásicos , Células HeLa , Humanos , Técnicas In Vitro , Potencial de la Membrana Mitocondrial/efectos de los fármacos
8.
Eur J Pharmacol ; 966: 176270, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38096970

RESUMEN

AIM: Liver fibrosis remains a great challenge in the world. Spinosin (SPI), a natural flavonoid-C-glycoside, possesses various pharmacological activities including anti-inflammatory and anti-myocardial fibrosis effects. In this study, we investigate whether SPI can be a potential lead for the treatment of liver fibrosis and explore whether the orphan nuclear receptor Nur77, a negative regulator of liver fibrosis development, plays a critical role in SPI's action. METHODS: A dual luciferase reporter system of α-SMA was established to evaluate the effect of SPI on hepatic stellate cell (HSC) activation in LX2 and HSC-T6 cells. A mouse model of CCl4-induced liver fibrosis was used to test the efficacy of SPI against liver fibrosis. The expression levels of Nur77, inflammatory cytokines and collagen were determined by Western blotting and qPCR. Potential kinase pathways involved were also analyzed. The affinity of Nur77 with SPI was documented by fluorescence titration. RESULTS: SPI can strongly suppress TGF-ß1-mediated activation of both LX2 and HSC-T6 cells in a dose-dependent manner. SPI increases the expression of Nur77 and reduces TGF-ß1-mediated phosphorylation levels of ASK1 and p38 MAPK, which can be reversed by knocking out of Nur77. SPI strongly inhibits collagen deposition (COLA1) and reduces inflammatory cytokines (IL-6 and IL-1ß), which is followed by improved liver function in the CCl4-induced mouse model. SPI can directly bind to R515 and R563 in the Nur77-LBD pocket with a Kd of 2.14 µM. CONCLUSION: Spinosin is the major pharmacological active component of Ziziphus jujuba Mill. var. spinosa which has been frequently prescribed in traditional Chinese medicine. We demonstrate here for the first time that spinosin is a new therapeutic lead for treatment of liver fibrosis by targeting Nur77 and blocking the ASK1/p38 MAPK signaling pathway.


Asunto(s)
Células Estrelladas Hepáticas , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Transducción de Señal , Línea Celular , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Flavonoides/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Colágeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Hígado
9.
Carcinogenesis ; 34(6): 1208-15, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23389291

RESUMEN

We recently reported that an N-terminally truncated retinoid X receptor-α (tRXRα) produced in cancer cells acts to promote cancer cell growth and survival through AKT activation. However, how RXRα is cleaved and how the cleavage is regulated in cancer cells remain undefined. In this study, we demonstrated that calpain II could cleave RXRα protein in vitro, generating two truncated RXRα products. The cleavage sites in RXRα were mapped by Edman N-terminal sequencing to Gly(90)↓Ser(91) and Lys(118)↓Val(119). Transfection of the resulting cleavage product RXRα/90, but not RXRα/118, resulted in activation of AKT in cancer cells, similar to the effect of tRXRα. In support of the role of calpain II in cancer cells, transfection of calpain II expression vector or its activation by ionomycin enhanced the production of tRXRα, whereas treatment of cells with calpain inhibitors reduced the levels of tRXRα. Co-immunoprecipitation assays also showed an interaction between calpain II and RXRα. In studying the regulation of tRXRα production, we observed that treatment of cells with lithium chloride or knockdown of glycogen synthase kinase-3ß (GSK-3ß) significantly increased the production of tRXRα. Conversely, overexpression of GSK-3ß reduced tRXRα expression. Furthermore, we found that the inhibitory effect of GSK-3ß on tRXRα production was due to its suppression of calpain II expression. Taken together, our data demonstrate that GSK-3ß plays an important role in regulating tRXRα production by calpain II in cancer cells, providing new insights into the development of new strategies and agents for the prevention and treatment of tRXRα-related cancers.


Asunto(s)
Calpaína/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Receptor alfa X Retinoide/metabolismo , Secuencia de Aminoácidos , Animales , Ionóforos de Calcio/farmacología , Calpaína/antagonistas & inhibidores , Línea Celular Tumoral , Regulación hacia Abajo , Activación Enzimática , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Células Hep G2 , Humanos , Ionomicina/farmacología , Cloruro de Litio/farmacología , Células MCF-7 , Ratones , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Análisis de Secuencia de Proteína , Transducción de Señal
10.
Anal Chem ; 84(15): 6421-8, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22784011

RESUMEN

Mitochondria are one of the most important organelles responsible for cellular energy metabolism and apoptosis regulation. However, single-mitochondrion analysis is challenging, because of their small sizes and the low content of organelle constituents. Here, we report the development of a sensitive and versatile platform for high-throughput multiparameter analysis of individual mitochondria. Employing specific fluorescent staining with a laboratory-built high-sensitivity flow cytometer (HSFCM), we demonstrate the simultaneous detection of side scatter, cardiolipin, and mitochondria DNA (mtDNA) of a single mitochondrion. Simultaneous measurements of side scatter, porin, and cytochrome c of individual mitochondria are reported for the first time. Correlation analysis among multiple attributes on an organelle-by-organelle basis could provide a more definitive assessment of the purity, structure integrity, and apoptosis-related proteins of isolated mitochondria than bulk measurement. This work represents a significant advancement in single-mitochondrion analysis. We believe that the HSFCM holds great potential for studying apoptotic signal transduction pathways at the single-mitochondrion level.


Asunto(s)
Citometría de Flujo , Mitocondrias/metabolismo , Cardiolipinas/análisis , Citocromos c/análisis , ADN Mitocondrial/análisis , Fluoresceína-5-Isotiocianato/química , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Nanopartículas/química , Dióxido de Silicio/química
11.
FASEB J ; 25(1): 192-205, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20847229

RESUMEN

The orphan nuclear receptor Nur77 is an immediate-early response gene whose expression is rapidly induced by various extracellular stimuli. The aims of this study were to study the role of Nur77 expression in the growth and survival of colon cancer cells and the mechanism by which Nur77 expression was regulated. We showed that levels of Nur77 were elevated in a majority of human colon tumors (9/12) compared to their nontumorous tissues and that Nur77 expression could be strongly induced by different colonic carcinogens including deoxycholic acid (DCA). DCA-induced Nur77 expression resulted in up-regulation of antiapoptotic BRE and angiogenic VEGF, and it enhanced the growth, colony formation, and migration of colon cancer cells. In studying the mechanism by which Nur77 was regulated in colon cancer cells, we found that ß-catenin was involved in induction of Nur77 expression through its activation of the transcriptional activity of AP-1 (c-Fos/c-Jun) that bound to and transactivated the Nur77 promoter. Together, our results demonstrate that Nur77 acts to promote the growth and survival of colon cancer cells and serves as an important mediator of the Wnt/ß-catenin and AP-1 signaling pathways.


Asunto(s)
Proliferación Celular , Neoplasias del Colon/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , beta Catenina/metabolismo , Animales , Western Blotting , Supervivencia Celular , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Ácido Desoxicólico/toxicidad , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Inmunohistoquímica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , beta Catenina/genética
12.
Bioorg Med Chem Lett ; 22(2): 1082-5, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22196118

RESUMEN

Ginsenoside Rh(2), one of the most important ginsenosides with anticancer properties in red ginseng, has been developed as principal antitumor ingredient for clinical use. However, the cytotoxicity test in human hepatocyte cell line QSG-7701 (IC(50) 37.3µM) indicated that Rh(2) might show strong cytotoxic side-effect on the normal liver cells. For blunting the toxicity, Rh(2) was structurally modified by reacting with octanoyl chloride to give a dioctanoyl ester of Rh(2) (D-Rh(2)) in the present study. MTT assay in QSG-7701 cell line in vitro showed that the cytotoxicity of D-Rh(2) on human hepatocyte cells (IC(50) 80.5µM) was significantly lower than that of Rh(2). While antitumor xenograft assay in mice bearing H22 liver cancer cells in vivo showed that the antitumor activity of D-Rh(2) retained to be strong as that of Rh(2). According to previous pharmacokinetic studies, the fatty acid esterification of Rh(2) might be of detoxification reaction to cells. Additionally, D-Rh(2) showed significant enhancement on increasing thymus index at the dose of 10mg/kg compared with vehicle treated control group. Thus, D-Rh(2) might indirectly affect tumor growth by stimulating lymphocytes to become cytotoxic to tumor cells. Finally, our findings suggested that D-Rh(2), the fatty acid ester of Rh(2), might attenuate the side-effect by detoxification to human normal cell and could be a more potential candidate for developing as an antitumor drug.


Asunto(s)
Antineoplásicos/farmacología , Ésteres/farmacología , Ácidos Grasos/química , Ginsenósidos/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Ésteres/química , Ginsenósidos/síntesis química , Ginsenósidos/química , Humanos , Ratones , Ratones Endogámicos , Conformación Molecular , Estructura Molecular , Trasplante de Neoplasias , Bazo/efectos de los fármacos , Relación Estructura-Actividad , Timo/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cells ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36497127

RESUMEN

Hepatocellular carcinoma (HCC) commonly possesses chronical elevation of IRE1α-ASK1 signaling. Orphan nuclear receptor Nur77, a promising therapeutic target in various cancer types, is frequently silenced in HCC. In this study, we show that cryptomeridiol (Bkh126), a naturally occurring sesquiterpenoid derivative isolated from traditional Chinese medicine Magnolia officinalis, has therapeutic efficacy in HCC by aggravating the pre-activated UPR and activating the silenced Nur77. Mechanistically, Nur77 is induced to sense IRE1α-ASK1-JNK signaling and translocate to the mitochondria, which leads to the loss of mitochondrial membrane potential (Δψm). The Bkh126-induced aggravation of ER stress and mitochondrial dysfunction result in increased cytotoxic product of reactive oxygen species (ROS). The in vivo anti-HCC activity of Bkh126 is superior to that of sorafenib, currently used to treat advanced HCC. Our study shows that Bkh126 induces Nur77 to connect ER stress to mitochondria-mediated cell killing. The identification of Nur77 as a molecular target of Bhk126 provides a basis for improving the leads for the further development of anti-HCC drugs.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores Nucleares Huérfanos , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Estrés del Retículo Endoplásmico , Endorribonucleasas , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Receptores Nucleares Huérfanos/metabolismo , Proteínas Serina-Treonina Quinasas
14.
Cancers (Basel) ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36612021

RESUMEN

Hypoxia reprograms cancer stem cells. Nur77, an orphan nuclear receptor, highly expresses and facilitates colorectal cancer (CRC) stemness and metastasis under a hypoxic microenvironment. However, safe and effective small molecules that target Nur77 for CSC depletion remain unexplored. Here, we report our identification of the ginsenoside compound K (CK) as a new ligand of Nur77. CK strongly inhibits hypoxia-induced CRC sphere formation and CSC phenotypes in a Nur77-dependent manner. Hypoxia induces an intriguing Nur77-Akt feed-forward loop, resulting in reinforced PI3K/Akt signaling that is druggable by targeting Nur77. CK directly binds and modulates Nur77 phosphorylation to block the Nur77-Akt activation loop by disassociating Nur77 from the p63-bound Dicer promoter. The transcription of Dicer that is silenced under a hypoxia microenvironment is thus reactivated by CK. Consequently, the expression and processing capability of microRNA let-7i-5p are significantly increased, which targets PIK3CA mRNA for decay. The in vivo results showed that CK suppresses cancer stemness and metastasis without causing significant adverse effects. Given that the majority of FDA-approved and currently clinically tested PI3K/Akt inhibitors are reversible ATP-competitive kinase antagonists, targeting Nur77 for PI3K/Akt inactivation may provide an alternative strategy to overcoming concerns about drug selectivity and safety. The mechanistic target identification provides a basis for exploring CK as a promising nutraceutical against CRC.

15.
J Hepatocell Carcinoma ; 9: 141-155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300206

RESUMEN

Purpose: Early detection and prognostic prediction of hepatocellular carcinoma (HCC) remain a great challenge. In this study, we explored the role and diagnostic significance of stanniocalcin 2 (STC2), recently identified as a secretory protein, in HCC. Methods: STC2 mRNA and protein in HCC tissues were examined by qRT-PCR and immunohistochemistry. The regulatory role of HCC growth by STC2 was evaluated in vitro and in vivo. Serum STC2 levels were determined in HCC patients and compared to those with liver cirrhosis (LC) and normal controls (NC). The difference and significance of STC2 levels between groups were analyzed by Mann-Whitney U-test. The diagnostic value of serum STC2 in detecting early HCC was assayed with receiver operating characteristics (ROC). The association of STC2 with overall survival (OS) was determined with Kaplan-Meier method. Results: STC2 was elevated in about 77.1% HCC patients and correlated with advanced tumor progression. Overexpression or knockdown of STC2 stimulated or suppressed HCC colony formation and xenograft tumor growth. AKT activation played a critical role in tumor-promoting effect of STC2. The median level of serum STC2 in HCC patients (n = 98, 2086.6 ng/L) was 2.6-fold and 4.2-fold that in LC patients (n = 42, 801.9 ng/L) and NC (n = 26, 496.9 ng/L), respectively. A cut-off value 1493 ng/L for STC2 could distinguish early HCC from LC with a sensitivity of 76.9% and a specificity of 76.2%, both of which were superior to AFP at 20 µg/L (sensitivity 69.2%, specificity 52.4%). STC2 was positive in 77.8% (14/18) AFP-negative patients. High STC2 level was correlated with poor overall and disease specific survival. Conclusion: STC2 is upregulated in both tumor and serum of HCC patients, and its overexpression promotes HCC via AKT pathway. STC2 possesses a diagnostic significance and may serve as an auxiliary biomarker of AFP for detecting early HCC.

16.
Front Pharmacol ; 12: 739658, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539418

RESUMEN

Mangostin, which has the function of anti-inflammatory, antioxidant, and anticancer, etc, is one of the main active ingredients of the hull of the mangosteen. The main objective of the study was to elucidate its anti-cancer function and possible mechanism. α-Mangostin was separated and structurally confirmed. MTT method was used to check the effect of mangostin on breast cancer cell proliferation. Then the effect of α-Mangostin on the transcriptional activity of RXRα was tested by dual-luciferase reporter gene assay. And Western blot (WB) was used to detect the expression of apoptosis-related proteins or cell cycle-associated proteins after treatment. Also, this study was to observe the effects of α-Mangostin on the invasion of breast cancer cell line MDA-MB-231. α-Mangostin regulates the downstream effectors of the PI3K/AKT signaling pathway by degrading RXRα/tRXRα. α-Mangostin can trigger PARP cleavage and induce apoptosis, which may be related to the induction of upregulated BAX expression and downregulation of BAD and cleaved caspase-3 expression in MDA-MB-231 cells through blockade of AKT signaling. The experiments verify that α-Mangostin have evident inhibition effects of invasion and metastasis of MDA-MB-231 cells. Cyclin D1 was involved in the anticancer effects of α-Mangostin on the cell cycle in MDA-MB-231 cells. α-Mangostin induces apoptosis, suppresses the migration and invasion of breast cancer cells through the PI3K/AKT signaling pathway by targeting RXRα, and cyclin D1 has involved in this process.

17.
Theranostics ; 11(7): 3376-3391, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33537093

RESUMEN

Background: Colorectal cancer (CRC) and the associated metastatic lesions are reported to be hypoxic. Hypoxia is a common feature in the tumor microenvironment and a potent stimulant of CRC. We have identified a regulatory role of Nur77 on Akt activation to enhance ß-catenin signaling essential for CRC progression under hypoxic conditions. Methods: The functional role of Nur77 in hypoxia-induced EMT was examined by scattering assays to monitor the morphologies of CRC cell lines under 1% O2. Sphere formation assays were performed to investigate whether Nur77 induced cancer stem cell-like properties in hypoxic CRC cells. The expression of various epithelial-to-mesenchymal transition (EMT) and stemness markers was analyzed by qPCR and Western blotting. Finally, Nur77 function and signaling in vivo was ascertained in subcutaneous tumor xenograft or liver metastasis model in nude mice using CRC cells stably transfected with appropriate constructs. Results: Herein, we show, for the first time, that Nur77 is a novel regulator of microRNA biogenesis that may underlie its significant tumor-promoting activities in CRC cells under hypoxia. Mechanistically, Nur77 interacted with the tumor suppressor protein p63, leading to the inhibition of p63-dependent transcription of Dicer, an important miRNA processor and subsequent decrease in the biogenesis of let-7i-5p which targeted the 3'UTR of p110α mRNA and regulated its stability. Knockdown of Nur77 or overexpression of let-7i-5p inhibited the tumor metastasis in vivo. Conclusion: Our data uncovered a novel mechanistic link connecting Nur77, Akt, and invasive properties of CRC in the hypoxic microenvironment.


Asunto(s)
Adenocarcinoma/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Neoplasias Colorrectales/genética , ARN Helicasas DEAD-box/genética , Hipoxia/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ribonucleasa III/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidad , Adenocarcinoma/secundario , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , ARN Helicasas DEAD-box/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia/metabolismo , Hipoxia/mortalidad , Hipoxia/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/secundario , Ratones , Ratones Desnudos , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ribonucleasa III/metabolismo , Transducción de Señal , Análisis de Supervivencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carga Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Biol Chem ; 284(27): 18503-14, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19416983

RESUMEN

Recent evidence suggests that extranuclear action of retinoid receptors is involved in mediating the pleiotropic effects of retinoids. However, whether they reside in the cytoplasm remains elusive. Here, we showed that retinoic acid receptor-gamma (RARgamma) was cytoplasmic in confluent cells, or when cells were released from serum depletion or treated with growth factors. In studying the regulation of RARgamma subcellular localization, we observed that ectopically overexpressed RARgamma was mainly cytoplasmic irrespective of serum concentration and cell density. The cytoplasmic retention of RARgamma was inhibited by ligand retinoic acid (RA). In addition, coexpression of retinoid X receptor-alpha (RXRalpha) resulted in nuclear localization of RARgamma through their heterodimerization. Mutagenesis studies revealed that a C-terminal fragment of RXRalpha potently prevents RA-induced RARgamma nuclear localization and transcriptional function. Furthermore, our results showed that the cytoplasmic retention of RARgamma was due to the presence of its unique N-terminal A/B domain, which was subject to regulation by p38 MAPK-mediated phosphorylation. Deletion or mutation of the N-terminal A/B domain largely impaired its cytoplasmic localization. Together, our data demonstrate that the subcellular localization of RARgamma is regulated by complex interactions among ligand binding, receptor phosphorylation, and receptor dimerizations.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Transporte de Proteínas/fisiología , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo , Proteínas Sanguíneas/farmacología , Recuento de Células , División Celular/efectos de los fármacos , División Celular/fisiología , Núcleo Celular/metabolismo , Medios de Cultivo/farmacología , Citoplasma/metabolismo , Dimerización , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Riñón/citología , Mutagénesis , Fosforilación/fisiología , Estructura Terciaria de Proteína , Receptores de Ácido Retinoico/genética , Receptor alfa X Retinoide/metabolismo , Relación Estructura-Actividad , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Receptor de Ácido Retinoico gamma
19.
Mol Cell Biochem ; 335(1-2): 283-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19784811

RESUMEN

Monocyte/macrophage differentiation is an essential process during atherosclerosis development. The retinoid X receptor (RXR) is a member of the nuclear hormone receptor superfamily, which plays an important regulatory role in many metabolic disorders, including atherosclerosis. The purpose of this study was to investigate the effect of RXR agonist on monocyte/macrophage differentiation in vitro. The THP-1 cell line was differentiated into a macrophage-like phenotype by incubation with phorbol-12-myristate-13-acetate (PMA) in the presence or absence of RXR agonist. The viability of adherent differentiated THP-1 cells was determined by MTT assay. Macrophage surface marker CD11b and CD36 was analyzed by flow cytometry. Phagocytosis was measured by fluorescence-labeled latex beads. The production of Cytokine Tunlornecrosisfactor-alpha (TNF-alpha), Interlaken-12p70 (IL-12p70), and Matrix metalloproteinase-9 (MMP-9), each of which was analyzed by ELISA. In the presence of the RXR agonists 9-cis retinoic acid or SR11237, PMA-induced THP-1 cells became less adherent, showed decreased macrophage-like morphological changes, decreased cell surface antigen CD11b and CD36 expression, and down regulated the phagocytosis of latex beads and the production of TNF-alpha and MMP-9. These data suggest that RXR agonists inhibit PMA-induced THP-1 cell differentiation into macrophage-like cells, which may be helpful in understanding the anti-atherosclerotic effect of RXR and its agonists.


Asunto(s)
Monocitos/citología , Receptores X Retinoide/agonistas , Acetato de Tetradecanoilforbol/antagonistas & inhibidores , Diferenciación Celular , Línea Celular , Humanos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Acetato de Tetradecanoilforbol/farmacología
20.
Theranostics ; 10(3): 1230-1244, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31938062

RESUMEN

Rationale: Glycogen synthase kinase-3ß (GSK-3ß) plays key roles in metabolism and many cellular processes. It was recently demonstrated that overexpression of GSK-3ß can confer tumor growth. However, the expression and function of GSK-3ß in hepatocellular carcinoma (HCC) remain largely unexplored. This study is aimed at investigating the role and therapeutic target value of GSK-3ß in HCC. Methods: We firstly clarified the expression of GSK-3ß in human HCC samples. Given that deviated retinoid signalling is critical for HCC development, we studied whether GSK-3ß could be involved in the regulation. Since sorafenib is currently used to treat HCC, the involvement of GSK-3ß in sorafenib treatment response was determined. Co-immunoprecipitation, GST pull down, in vitro kinase assay, luciferase reporter and chromatin immunoprecipitation were used to explore the molecular mechanism. The biological readouts were examined with MTT, flow cytometry and animal experiments. Results: We demonstrated that GSK-3ß is highly expressed in HCC and associated with shorter overall survival (OS). Overexpression of GSK-3ß confers HCC cell colony formation and xenograft tumor growth. Tumor-associated GSK-3ß is correlated with reduced expression of retinoic acid receptor-ß (RARß), which is caused by GSK-3ß-mediated phosphorylation and heterodimerization abrogation of retinoid X receptor (RXRα) with RARα on RARß promoter. Overexpression of functional GSK-3ß impairs retinoid response and represses sorafenib anti-HCC effect. Inactivation of GSK-3ß by tideglusib can potentiate 9-cis-RA enhancement of sorafenib sensitivity (tumor inhibition from 48.3% to 93.4%). Efficient induction of RARß by tideglusib/9-cis-RA is required for enhanced therapeutic outcome of sorafenib, which effect is greatly inhibited by knocking down RARß. Conclusions: Our findings demonstrate that GSK-3ß is a disruptor of retinoid signalling and a new resistant factor of sorafenib in HCC. Targeting GSK-3ß may be a promising strategy for HCC treatment in clinic.


Asunto(s)
Carcinoma Hepatocelular , Glucógeno Sintasa Quinasa 3 beta/fisiología , Neoplasias Hepáticas Experimentales , Sorafenib , Tretinoina/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Receptor beta X Retinoide/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA