Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 177(5): 1252-1261.e13, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31080062

RESUMEN

Mitochondrial calcium uptake is crucial to the regulation of eukaryotic Ca2+ homeostasis and is mediated by the mitochondrial calcium uniporter (MCU). While MCU alone can transport Ca2+ in primitive eukaryotes, metazoans require an essential single membrane-spanning auxiliary component called EMRE to form functional channels; however, the molecular mechanism of EMRE regulation remains elusive. Here, we present the cryo-EM structure of the human MCU-EMRE complex, which defines the interactions between MCU and EMRE as well as pinpoints the juxtamembrane loop of MCU and extended linker of EMRE as the crucial elements in the EMRE-dependent gating mechanism among metazoan MCUs. The structure also features the dimerization of two MCU-EMRE complexes along an interface at the N-terminal domain (NTD) of human MCU that is a hotspot for post-translational modifications. Thus, the human MCU-EMRE complex, which constitutes the minimal channel components among metazoans, provides a framework for future mechanistic studies on MCU.


Asunto(s)
Canales de Calcio/metabolismo , Activación del Canal Iónico/fisiología , Complejos Multiproteicos/metabolismo , Multimerización de Proteína/fisiología , Canales de Calcio/genética , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Dominios Proteicos , Estructura Secundaria de Proteína
2.
Mol Cell ; 83(14): 2524-2539.e7, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37390818

RESUMEN

Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson's disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.


Asunto(s)
Enfermedad de Parkinson , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Canales de Potasio/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131932

RESUMEN

Transient receptor potential mucolipin 1 (TRPML1) is a Ca2+-permeable, nonselective cation channel ubiquitously expressed in the endolysosomes of mammalian cells and its loss-of-function mutations are the direct cause of type IV mucolipidosis (MLIV), an autosomal recessive lysosomal storage disease. TRPML1 is a ligand-gated channel that can be activated by phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] as well as some synthetic small-molecule agonists. Recently, rapamycin has also been shown to directly bind and activate TRPML1. Interestingly, both PI(3,5)P2 and rapamycin have low efficacy in channel activation individually but together they work cooperatively and activate the channel with high potency. To reveal the structural basis underlying the synergistic activation of TRPML1 by PI(3,5)P2 and rapamycin, we determined the high-resolution cryoelectron microscopy (cryo-EM) structures of the mouse TRPML1 channel in various states, including apo closed, PI(3,5)P2-bound closed, and PI(3,5)P2/temsirolimus (a rapamycin analog)-bound open states. These structures, combined with electrophysiology, elucidate the molecular details of ligand binding and provide structural insight into how the TRPML1 channel integrates two distantly bound ligand stimuli and facilitates channel opening.


Asunto(s)
Fosfatos de Fosfatidilinositol/farmacología , Sirolimus/farmacología , Canales de Potencial de Receptor Transitorio/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Canales de Potencial de Receptor Transitorio/genética
4.
Nature ; 556(7699): 130-134, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29562233

RESUMEN

The organellar two-pore channel (TPC) functions as a homodimer, in which each subunit contains two homologous Shaker-like six-transmembrane (6-TM)-domain repeats. TPCs belong to the voltage-gated ion channel superfamily and are ubiquitously expressed in animals and plants. Mammalian TPC1 and TPC2 are localized at the endolysosomal membrane, and have critical roles in regulating the physiological functions of these acidic organelles. Here we present electron cryo-microscopy structures of mouse TPC1 (MmTPC1)-a voltage-dependent, phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2)-activated Na+-selective channel-in both the apo closed state and ligand-bound open state. Combined with functional analysis, these structures provide comprehensive structural insights into the selectivity and gating mechanisms of mammalian TPC channels. The channel has a coin-slot-shaped ion pathway in the filter that defines the selectivity of mammalian TPCs. Only the voltage-sensing domain from the second 6-TM domain confers voltage dependence on MmTPC1. Endolysosome-specific PtdIns(3,5)P2 binds to the first 6-TM domain and activates the channel under conditions of depolarizing membrane potential. Structural comparisons between the apo and PtdIns(3,5)P2-bound structures show the interplay between voltage and ligand in channel activation. These MmTPC1 structures reveal lipid binding and regulation in a 6-TM voltage-gated channel, which is of interest in light of the emerging recognition of the importance of phosphoinositide regulation of ion channels.


Asunto(s)
Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Activación del Canal Iónico/efectos de los fármacos , Fosfolípidos/farmacología , Secuencia de Aminoácidos , Animales , Canales de Calcio/química , Canales de Calcio/genética , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Fosfolípidos/química , Fosfolípidos/metabolismo , Dominios Proteicos/efectos de los fármacos
5.
Nature ; 562(7728): E25, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30108362

RESUMEN

In this Article, ref. 15 has been replaced and references 32 to 50 have been renumbered online.

6.
Nature ; 559(7715): 570-574, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995855

RESUMEN

The mitochondrial calcium uniporter (MCU) is a highly selective calcium channel localized to the inner mitochondrial membrane. Here, we describe the structure of an MCU orthologue from the fungus Neosartorya fischeri (NfMCU) determined to 3.8 Å resolution by phase-plate cryo-electron microscopy. The channel is a homotetramer with two-fold symmetry in its amino-terminal domain (NTD) that adopts a similar structure to that of human MCU. The NTD assembles as a dimer of dimers to form a tetrameric ring that connects to the transmembrane domain through an elongated coiled-coil domain. The ion-conducting pore domain maintains four-fold symmetry, with the selectivity filter positioned at the start of the pore-forming TM2 helix. The aspartate and glutamate sidechains of the conserved DIME motif are oriented towards the central axis and separated by one helical turn. The structure of NfMCU offers insights into channel assembly, selective calcium permeation, and inhibitor binding.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Neosartorya/química , Sitios de Unión , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Modelos Moleculares , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Compuestos de Rutenio/farmacología , Solubilidad
7.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845029

RESUMEN

Arabidopsis thaliana two-pore channel AtTPC1 is a voltage-gated, Ca2+-modulated, nonselective cation channel that is localized in the vacuolar membrane and responsible for generating slow vacuolar (SV) current. Under depolarizing membrane potential, cytosolic Ca2+ activates AtTPC1 by binding at the EF-hand domain, whereas luminal Ca2+ inhibits the channel by stabilizing the voltage-sensing domain II (VSDII) in the resting state. Here, we present 2.8 to 3.3 Å cryoelectron microscopy (cryo-EM) structures of AtTPC1 in two conformations, one in closed conformation with unbound EF-hand domain and resting VSDII and the other in a partially open conformation with Ca2+-bound EF-hand domain and activated VSDII. Structural comparison between the two different conformations allows us to elucidate the structural mechanisms of voltage gating, cytosolic Ca2+ activation, and their coupling in AtTPC1. This study also provides structural insight into the general voltage-gating mechanism among voltage-gated ion channels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Canales de Calcio/genética , Cationes/metabolismo , Microscopía por Crioelectrón/métodos , Citosol/metabolismo , Activación del Canal Iónico , Potenciales de la Membrana/fisiología , Vacuolas/metabolismo
8.
Nature ; 552(7684): 205-209, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29211714

RESUMEN

TRPM4 is a calcium-activated, phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) -modulated, non-selective cation channel that belongs to the family of melastatin-related transient receptor potential (TRPM) channels. Here we present the electron cryo-microscopy structures of the mouse TRPM4 channel with and without ATP. TRPM4 consists of multiple transmembrane and cytosolic domains, which assemble into a three-tiered architecture. The N-terminal nucleotide-binding domain and the C-terminal coiled-coil participate in the tetrameric assembly of the channel; ATP binds at the nucleotide-binding domain and inhibits channel activity. TRPM4 has an exceptionally wide filter but is only permeable to monovalent cations; filter residue Gln973 is essential in defining monovalent selectivity. The S1-S4 domain and the post-S6 TRP domain form the central gating apparatus that probably houses the Ca2+- and PtdIns(4,5)P2-binding sites. These structures provide an essential starting point for elucidating the complex gating mechanisms of TRPM4 and reveal the molecular architecture of the TRPM family.


Asunto(s)
Microscopía por Crioelectrón , Canales Catiónicos TRPM/ultraestructura , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Sitios de Unión , Calcio/metabolismo , Ratones , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Especificidad por Sustrato , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/metabolismo
9.
Nature ; 550(7676): 415-418, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29019981

RESUMEN

Transient receptor potential mucolipin 1 (TRPML1) is a cation channel located within endosomal and lysosomal membranes. Ubiquitously expressed in mammalian cells, its loss-of-function mutations are the direct cause of type IV mucolipidosis, an autosomal recessive lysosomal storage disease. Here we present the single-particle electron cryo-microscopy structure of the mouse TRPML1 channel embedded in nanodiscs. Combined with mutagenesis analysis, the TRPML1 structure reveals that phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2) binds to the N terminus of the channel-distal from the pore-and the helix-turn-helix extension between segments S2 and S3 probably couples ligand binding to pore opening. The tightly packed selectivity filter contains multiple ion-binding sites, and the conserved acidic residues form the luminal Ca2+-blocking site that confers luminal pH and Ca2+ modulation on channel conductance. A luminal linker domain forms a fenestrated canopy atop the channel, providing several luminal ion passages to the pore and creating a negative electrostatic trap, with a preference for divalent cations, at the luminal entrance. The structure also reveals two equally distributed S4-S5 linker conformations in the closed channel, suggesting an S4-S5 linker-mediated PtdInsP2 gating mechanism among TRPML channels.


Asunto(s)
Microscopía por Crioelectrón , Endosomas/química , Lisosomas/química , Nanoestructuras/química , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/ultraestructura , Animales , Sitios de Unión , Calcio , Concentración de Iones de Hidrógeno , Transporte Iónico , Ligandos , Ratones , Modelos Moleculares , Mutación , Fosfatos de Fosfatidilinositol/metabolismo , Conformación Proteica , Electricidad Estática , Canales de Potencial de Receptor Transitorio/genética
10.
Nature ; 547(7664): 472-475, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28723891

RESUMEN

TMEM175 is a lysosomal K+ channel that is important for maintaining the membrane potential and pH stability in lysosomes. It contains two homologous copies of a six-transmembrane-helix (6-TM) domain, which has no sequence homology to the canonical tetrameric K+ channels and lacks the TVGYG selectivity filter motif found in these channels. The prokaryotic TMEM175 channel, which is present in a subset of bacteria and archaea, contains only a single 6-TM domain and functions as a tetramer. Here, we present the crystal structure of a prokaryotic TMEM175 channel from Chamaesiphon minutus, CmTMEM175, the architecture of which represents a completely different fold from that of canonical K+ channels. All six transmembrane helices of CmTMEM175 are tightly packed within each subunit without undergoing domain swapping. The highly conserved TM1 helix acts as the pore-lining inner helix, creating an hourglass-shaped ion permeation pathway in the channel tetramer. Three layers of hydrophobic residues on the carboxy-terminal half of the TM1 helices form a bottleneck along the ion conduction pathway and serve as the selectivity filter of the channel. Mutagenesis analysis suggests that the first layer of the highly conserved isoleucine residues in the filter is primarily responsible for channel selectivity. Thus, the structure of CmTMEM175 represents a novel architecture of a tetrameric cation channel whose ion selectivity mechanism appears to be distinct from that of the classical K+ channel family.


Asunto(s)
Lisosomas/química , Canales de Potasio/química , Canales de Potasio/metabolismo , Estructura Cuaternaria de Proteína , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Isoleucina/metabolismo , Modelos Moleculares
11.
Nature ; 531(7593): 196-201, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26689363

RESUMEN

Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here we present the crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca(2+). Ca(2+) binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain, the conformational changes of which are coupled to the pair of inner helices from the second 6-TM domains. Luminal Ca(2+) or Ba(2+) can modulate voltage activation by stabilizing the second voltage-sensing domain in the resting state and shift voltage activation towards more positive potentials. Our Ba(2+)-bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Canales de Calcio/química , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bario/metabolismo , Sitios de Unión , Calcio/metabolismo , Calcio/farmacología , Canales de Calcio/genética , Canales de Calcio/metabolismo , Cristalografía por Rayos X , Citosol/metabolismo , Motivos EF Hand , Conductividad Eléctrica , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
12.
Plant J ; 102(4): 779-796, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31872463

RESUMEN

Plasma membrane intrinsic proteins (PIPs) are known to be major facilitators of the movement of a number of substrates across cell membranes. From a drought-resistant cultivar of Oryza sativa (rice), we isolated an OsPIP1;3 gene single-nucleotide polymorphism (SNP) that is mostly expressed in rice roots and is strongly responsive to drought stress. Immunocytochemistry showed that OsPIP1;3 majorly accumulated on the proximal end of the endodermis and the cell surface around the xylem. Expression of GFP-OsPIP1;3 alone in Xenopus oocytes or rice protoplasts showed OsPIP1;3 mislocalization in the endoplasmic reticulum (ER)-like neighborhood, whereas co-expression of OsPIP2;2 recruited OsPIP1;3 to the plasma membrane and led to a significant enhancement of water permeability in oocytes. Moreover, reconstitution of 10×His-OsPIP1;3 in liposomes demonstrated water channel activity, as revealed by stopped-flow light scattering. Intriguingly, by patch-clamp technique, we detected significant NO3- conductance of OsPIP1;3 in mammalian cells. To investigate the physiological functions of OsPIP1;3, we ectopically expressed the OsPIP1;3 gene in Nicotiana benthamiana (tobacco). The transgenic tobacco plants exhibited higher photosynthesis rates, root hydraulic conductivity (Lpr ) and water-use efficiency, resulting in a greater biomass and a higher resistance to water deficit than the wild-type did. Further experiments suggested that heterologous expression of OsPIP1;3 in cyanobacterium altered bacterial growth under different conditions of CO2 gas supply. Overall, besides shedding light on the multiple functions played by OsPIP1;3, this work provides insights into the translational value of plant AQPs.


Asunto(s)
Expresión Génica Ectópica , Oryza/genética , Transporte Biológico , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oryza/crecimiento & desarrollo , Oryza/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
13.
Proc Natl Acad Sci U S A ; 114(5): 1009-1014, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096396

RESUMEN

Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate that AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Cationes Monovalentes/metabolismo , Activación del Canal Iónico , Sodio/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Canales de Calcio/química , Canales de Calcio/genética , Secuencia de Consenso , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación Missense , Conformación Proteica , Proteínas Recombinantes/química , Alineación de Secuencia , Especificidad de la Especie , Especificidad por Sustrato
14.
Mol Cell ; 32(3): 439-48, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18995841

RESUMEN

The receptor-evoked Ca(2+) signal includes activation of the store-operated channels (SOCs) TRPCs and the Orais. Although both are gated by STIM1, it is not known how STIM1 gates the channels and whether STIM1 gates the TRPCs and Orais by the same mechanism. Here, we report the molecular mechanism by which STIM1 gates TRPC1, which involves interaction between two conserved, negatively charged aspartates in TRPC1((639)DD(640)) with the positively charged STIM1((684)KK(685)) in STIM1 polybasic domain. Charge swapping and functional analysis revealed that exact orientation of the charges on TRPC1 and STIM1 are required, but all positive-negative charge combinations on TRPC1 and STIM1, except STIM1((684)EE(685))+TRPC1((639)RR(640)), are functional as long as they are reciprocal, indicating that STIM1 gates TRPC1 by intermolecular electrostatic interaction. Similar gating was observed with TRPC3((697)DD(698)). STIM1 gates Orai1 by a different mechanism since the polybasic and S/P domains of STIM1 are not required for activation of Orai1 by STIM1.


Asunto(s)
Canales de Calcio/fisiología , Calcio/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Canales Catiónicos TRPC/fisiología , Secuencia de Aminoácidos , Biotinilación , Línea Celular , Membrana Celular/fisiología , Retículo Endoplásmico/fisiología , Humanos , Activación del Canal Iónico , Riñón , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/química , Proteína ORAI1 , Electricidad Estática , Molécula de Interacción Estromal 1 , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/genética , Transfección
15.
Nat Cell Biol ; 9(6): 636-45, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17486119

RESUMEN

Stromal interacting molecule 1 (STIM1) is a Ca(2+) sensor that conveys the Ca(2+) load of the endoplasmic reticulum to store-operated channels (SOCs) at the plasma membrane. Here, we report that STIM1 binds TRPC1, TRPC4 and TRPC5 and determines their function as SOCs. Inhibition of STIM1 function inhibits activation of TRPC5 by receptor stimulation, but not by La(3+), suggesting that STIM1 is obligatory for activation of TRPC channels by agonists, but STIM1 is not essential for channel function. Through a distinct mechanism, STIM1 also regulates TRPC3 and TRPC6. STIM1 does not bind TRPC3 and TRPC6, and regulates their function indirectly by mediating the heteromultimerization of TRPC3 with TRPC1 and TRPC6 with TRPC4. TRPC7 is not regulated by STIM1. We propose a new definition of SOCs, as channels that are regulated by STIM1 and require the store depletion-mediated clustering of STIM1. By this definition, all TRPC channels, except TRPC7, function as SOCs.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Canales Catiónicos TRPC/metabolismo , Sitios de Unión/fisiología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Agonistas Colinérgicos/farmacología , Gadolinio/farmacología , Humanos , Sustancias Macromoleculares/metabolismo , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Unión Proteica/fisiología , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Molécula de Interacción Estromal 1 , Canales Catiónicos TRPC/efectos de los fármacos , Canales Catiónicos TRPC/genética
16.
Proc Natl Acad Sci U S A ; 108(40): 16634-9, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21933962

RESUMEN

The structural and functional conversion of the nonselective NaK channel to a K(+) selective channel (NaK2K) allows us to identify two key residues, Tyr and Asp in the filter sequence of TVGYGD, that participate in interactions central to stabilizing the K(+) channel selectivity filter. By using protein crystallography and channel electrophysiology, we demonstrate that the K(+) channel filter exists as an energetically strained structure and requires these key protein interactions working in concert to hold the filter in the precisely defined four-sited configuration that is essential for selective K(+) permeation. Disruption of either interaction, as tested on both the NaK2K and eukaryotic K(v)1.6 channels, can reduce or completely abolish K(+) selectivity and in some cases may also lead to channel inactivation due to conformational changes at the filter. Additionally, on the scaffold of NaK we recapitulate the protein interactions found in the filter of the Kir channel family, which uses a distinct interaction network to achieve similar stabilization of the filter.


Asunto(s)
Modelos Moleculares , Potasio/química , Conformación Proteica , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Secuencias de Aminoácidos , Cristalografía , Electrofisiología , ATPasa Intercambiadora de Sodio-Potasio/genética
17.
Proc Natl Acad Sci U S A ; 108(2): 592-7, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187429

RESUMEN

Cyclic nucleotide-gated (CNG) channels play an essential role in the visual and olfactory sensory systems and are ubiquitous in eukaryotes. Details of their underlying ion selectivity properties are still not fully understood and are a matter of debate in the absence of high-resolution structures. To reveal the structural mechanism of ion selectivity in CNG channels, particularly their Ca(2+) blockage property, we engineered a set of mimics of CNG channel pores for both structural and functional analysis. The mimics faithfully represent the CNG channels they are modeled after, permeate Na(+) and K(+) equally well, and exhibit the same Ca(2+) blockage and permeation properties. Their high-resolution structures reveal a hitherto unseen selectivity filter architecture comprising three contiguous ion binding sites in which Na(+) and K(+) bind with different ion-ligand geometries. Our structural analysis reveals that the conserved acidic residue in the filter is essential for Ca(2+) binding but not through direct ion chelation as in the currently accepted view. Furthermore, structural insight from our CNG mimics allows us to pinpoint equivalent interactions in CNG channels through structure-based mutagenesis that have previously not been predicted using NaK or K(+) channel models.


Asunto(s)
Activación del Canal Iónico , Iones/química , Secuencia de Aminoácidos , Animales , Bacillus cereus/metabolismo , Proteínas Bacterianas/química , Calcio/química , Bovinos , Humanos , Ligandos , Datos de Secuencia Molecular , Mutagénesis , Potasio/química , Conformación Proteica , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Sodio/química
18.
Proc Natl Acad Sci U S A ; 108(2): 598-602, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187421

RESUMEN

Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K(+) channel selectivity filters. Combined with single channel electrophysiology, we show that only the channel with four ion binding sites is K(+) selective, whereas those with two or three are nonselective and permeate Na(+) and K(+) equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K(+) channels is essential for highly selective and efficient permeation of K(+) ions.


Asunto(s)
Iones/química , Bacillus subtilis/metabolismo , Sitios de Unión , Carbono/química , Cristalografía por Rayos X/métodos , Electrofisiología/métodos , Ligandos , Mutación , Oxígeno/química , Potasio/química , Canales de Potasio/química , Unión Proteica , Conformación Proteica , Sodio/química
19.
Proc Natl Acad Sci U S A ; 108(26): 10750-5, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21670282

RESUMEN

Mutations in the serine-threonine kinase with-no-lysine 4 (WNK4) cause pseudohypoaldosteronism type 2 (PHAII), a Mendelian form of human hypertension. WNK4 regulates diverse ion transporters in the kidney, and dysregulation of renal transporters is considered the main cause of the WNK4 mutation-associated hypertension. Another determinant of hypertension is vascular tone that is regulated by Ca(2+)-dependent blood vessel constriction. However, the role of WNK4 in vasoconstriction as part of its function to regulate blood pressure is not known. Here, we report that WNK4 is a unique modulator of blood pressure by restricting Ca(2+) influx via the transient receptor potential canonical 3 (TRPC3) channel in the vasculature. Loss of WNK4 markedly augmented TRPC3-mediated Ca(2+) influx in vascular smooth muscle cells (VSMCs) in response to α-adrenoreceptor stimulation, which is the pathological hallmark of hypertension in resistance arteries. Notably, WNK4 depletion induced hypertrophic cell growth in VSMCs and increased vasoconstriction in small mesenteric arteries via TRPC3-mediated Ca(2+) influx. In addition, WNK4 mutants harboring the Q562E PHAII-causing or the D318A kinase-inactive mutation failed to mediate TRPC3 inhibition. These results define a previously undescribed function of WNK4 and reveal a unique therapeutic target to control blood pressure in WNK4-related hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Vasos Sanguíneos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Vasos Sanguíneos/citología , Línea Celular , Humanos , Mutación , Proteínas Serina-Treonina Quinasas/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vasoconstricción/fisiología
20.
bioRxiv ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39005349

RESUMEN

Transient Receptor Potential Mucolipin 1 (TRPML1) is a lysosomal cation channel whose loss-of-function mutations directly cause the lysosomal storage disorder mucolipidosis type IV (MLIV). TRPML1 can be allosterically regulated by various ligands including natural lipids and small synthetic molecules and the channel undergoes a global movement propagated from ligand-induced local conformational changes upon activation. In this study, we identified a functionally critical residue, Tyr404, at the C-terminus of the S4 helix, whose mutations to tryptophan and alanine yield gain- and loss-of-function channels, respectively. These allosteric mutations mimic the ligand activation or inhibition of the TRPML1 channel without interfering with ligand binding and both mutant channels are susceptible to agonist or antagonist modulation, making them better targets for screening potent TRPML1 activators and inhibitors. We also determined the high-resolution structure of TRPML1 in complex with the PI(4,5)P2 inhibitor, revealing the structural basis underlying this lipid inhibition. In addition, an endogenous phospholipid likely from sphingomyelin is identified in the PI(4,5)P2-bound TRPML1 structure at the same hotspot for agonists and antagonists, providing a plausible structural explanation for the inhibitory effect of sphingomyelin on agonist activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA