Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Am Chem Soc ; 146(30): 20814-20822, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39031086

RESUMEN

The sluggish CO2 reduction and evolution reaction kinetics are thorny problems for developing high-performance Li-CO2 batteries. For the complicated multiphase reactions and multielectron transfer processes in Li-CO2 batteries, exploring efficient cathode catalysts and understanding the interplay between structure and activity are crucial to couple with these pendent challenges. In this work, we applied the CoS as a model catalyst and adjusted its electronic structure by introducing sulfur vacancies to optimize the d-band and p-band centers, which steer the orbital hybridization and boost the redox kinetics between Li and CO2, thus improving the discharge platform of Li-CO2 batteries and altering the deposition behavior of discharge products. As a result, a highly efficient bidirectional catalyst exhibits an ultrasmall overpotential of 0.62 V and a high energy efficiency of 82.8% and circulates stably for nearly 600 h. Meanwhile, density functional theory calculations and multiphysics simulations further elucidate the mechanism of bidirectional activity. This work not only provides a proof of concept to design a remarkably efficient catalyst but also sheds light on promoting the reversible Li-CO2 reaction by tailoring the electronic structure.

2.
Small ; 20(1): e2304463, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649191

RESUMEN

The high activity of water molecules results in a series of awful parasitic reaction, which seriously impede the development of aqueous zinc batteries. Herein, a new gel electrolyte with multiple molecular anchors is designed by employing natural biomaterials from chitosan and chlorophyll derivative. The gel electrolyte firmly anchors water molecules by ternary hydrogen bonding to reduce the activity of water molecules and inhibit hydrogen evolution reaction. Meanwhile, the multipolar charged functional groups realize the gradient induction and redistribution of Zn2+ , which drives oriented Zn (002) plane deposition of Zn2+ and then achieves uniform Zn deposition and dendrite-free anode. As a result, it endows the Zn||Zn cell with over 1700 h stripping/plating processes and a high efficiency of 99.4% for the Zn||Cu cell. In addition, the Zn||V2 O5 full cells also exhibit capacity retention of 81.7% after 600 cycles at 0.5 A g-1 and excellent long-term stability over 1600 cycles at 2 A g-1 , and the flexible pouch cells can provide stable power for light-emitting diodes even after repeated bending. The gel electrolyte strategy provides a reference for reversible zinc anode and flexible wearable devices.

3.
J Sports Sci ; 42(13): 1272-1287, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39115012

RESUMEN

We aimed to assess the effect of exercise training on heart rate variability (HRV) in hypertensive patients and to provide practical recommendations. We systematically searched seven databases for randomized controlled trials (RCTs) comparing the efficacy of exercise interventions vs. non-exercise control for HRV in adults with hypertension. HRV parameters, blood pressure (BP), and heart rate (HR) from the experimental and control groups were extracted to carry out meta-analysis. To explore the heterogeneity, we performed sensitivity analysis, sub-analysis, and meta-regression. Twelve RCTs were included, and the main results demonstrated exercise produced improvement in root mean square of successive RR-intervals differences (RMSSD) and high frequency (HF), and reductions in LF/HF, resting systolic blood pressure (SBP), and HR. The sub-analysis and meta-regression showed that AE improved more HRV indices and was effective in reducing BP compared with RE. Follow-up duration was also an important factor. Data suggests exercise training has ameliorating effects on HRV parameters, resting SBP, and HR in hypertensive patients, showing enhanced autonomic nervous system function and vagal activity. This effect may be better realized with exercise interventions of 4 weeks or more. Considering our results and the hypertension practice guidelines, we tend to recommend patients choose supervised AE.


Asunto(s)
Presión Sanguínea , Terapia por Ejercicio , Frecuencia Cardíaca , Hipertensión , Humanos , Frecuencia Cardíaca/fisiología , Hipertensión/fisiopatología , Hipertensión/terapia , Presión Sanguínea/fisiología , Terapia por Ejercicio/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Sistema Nervioso Autónomo/fisiopatología , Sistema Nervioso Autónomo/fisiología , Ejercicio Físico/fisiología
4.
Nano Lett ; 23(12): 5722-5730, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37314735

RESUMEN

The organic electrolyte can resolve the hurdle of hydrogen evolution in aqueous electrolytes but suffers from sluggish electrochemical reaction kinetics due to a compromised mass transfer process. Herein, we introduce a chlorophyll, zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (Chl), as a multifunctional electrolyte additive for aprotic zinc batteries to address the related dynamic problems in organic electrolyte systems. The Chl exhibits multisite zincophilicity, which significantly reduces the nucleation potential, increases the nucleation sites, and induces uniform nucleation of Zn metal with a nucleation overpotential close to zero. Furthermore, the lower LUMO of Chl contributes to a Zn-N-bond-containing SEI layer and inhibits the decomposition of the electrolyte. Therefore, the electrolyte enables repeated zinc stripping/plating up to 2000 h (2 Ah cm-2 cumulative capacity) with an overpotential of only 32 mV and a high Coulomb efficiency of 99.4%. This work is expected to enlighten the practical application of organic electrolyte systems.

5.
J Dairy Sci ; 106(1): 84-95, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36357206

RESUMEN

Cronobacter sakazakii is a harmful foodborne pathogen, and its contaminated food will pose a huge threat to human health. Prevention of C. sakazakii contamination of food is valuable for food safety as well as for human health. In this study, silver nanoparticles (AgNP) were successfully immobilized on the surface of cellulose acetate (CA) and polymethylmethacrylate (PMMA) composite to obtain AgNP/PMMA/CA film. Through the inhibition zone and growth curve experiments, we found that AgNP/PMMA/CA films has excellent antibacterial activity on C. sakazakii. The AgNP/PMMA/CA film can prolong the lag phase of the growth curve of C. sakazakii from 2 to 8 h. The antibacterial films were found to reduce the survival of C. sakazakii in Luria-Bertani and infant formula by combining it with a mild heat treatment (45°C, 50°C, and 55°C). The AgNP/PMMA/CA film combined with 55°C water bath can completely inactivate C. sakazakii in infant formula within 120 min. Finally, the potential mechanism by which AgNP/PMMA/CA films reduce the heat tolerance of C. sakazakii was investigated by quantitative real-time PCR. The results showed that AgNP/PMMA/CA films could reduce the expression of environmental tolerance-related genes in C. sakazakii. The current research shows that AgNP/PMMA/CA film has strong antibacterial activity, and the antibacterial film combined with mild heat treatment can accelerate the inactivation of C. sakazakii and effectively reduce the harm of foodborne pathogens. The AgNP/PMMA/CA film can be used as a potential packaging material or antibacterial surface coating.


Asunto(s)
Cronobacter sakazakii , Nanopartículas del Metal , Humanos , Animales , Fórmulas Infantiles/microbiología , Polimetil Metacrilato/farmacología , Leche/microbiología , Plata/farmacología , Microbiología de Alimentos , Antibacterianos/farmacología
6.
Nano Lett ; 22(23): 9685-9692, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36441867

RESUMEN

The practical application of Na-superionic conductor structured materials is hindered by limited energy density and structure damage upon activating the third Na+. We propose a bimetal substitution strategy with cheaper Fe and Ni elements for costive vanadium in the polyanion to improve both ionic and electronic conductivities, and a single two-phase reaction during Na+ intercalation/deintercalation and much reduced Na+ diffusion barrier are uncovered by ex-situ X-ray diffraction and density functional theory calculations. Thus, the obtained cathode, Na3Fe0.8VNi0.2(PO4)3, shows excellent electrochemical performances including high specific capacity (102.2 mAh g-1 at 0.1C), excellent rate capability (79.3 mAh g-1 at 20C), cycling stability (84.6% of capacity retention over 1400 cycles at 20C), low-temperature performance (89.7 mAh g-1 at 2C and -10 °C), and structure stability in an extended voltage window for the third Na+ utilization. A competitive energy density of ≈287 Wh kg-1 for full batteries based on cathode and anode materials is also confirmed.

7.
Molecules ; 28(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37241847

RESUMEN

High-energy-density lithium metal batteries with high safety and stability are urgently needed. Designing the novel nonflammable electrolytes possessing superior interface compatibility and stability is critical to achieve the stable cycling of battery. Herein, the functional additive dimethyl allyl-phosphate and fluoroethylene carbonate were introduced to triethyl phosphate electrolytes to stabilize the deposition of metallic lithium and accommodate the electrode-electrolyte interface. In comparison with traditional carbonate electrolyte, the designed electrolyte shows high thermostability and inflaming retarding characteristics. Meanwhile, the Li||Li symmetrical batteries with designed phosphonic-based electrolytes exhibit a superior cycling stability of 700 h at the condition of 0.2 mA cm-2, 0.2 mAh cm-2. Additionally, the smooth- and dense-deposited morphology was observed on an cycled Li anode surface, demonstrating that the designed electrolytes show better interface compatibility with metallic lithium anodes. The Li||LiNi0.8Co0.1Mn0.1O2 and Li||LiNi0.6Co0.2Mn0.2O2 batteries paired with phosphonic-based electrolytes show better cycling stability after 200 and 450 cycles at the rate of 0.2 C, respectively. Our work provides a new way to ameliorate nonflammable electrolytes in advanced energy storage systems.

8.
J Dairy Sci ; 105(8): 6469-6482, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35840406

RESUMEN

Cronobacter sakazakii is a food-borne pathogen that is resistant to a variety of environmental stress conditions. It can survive in harsh environments. We studied the effects of silver nanoparticles (AgNP) on the environmental tolerance and biofilm formation of C. sakazakii. First, we determined the minimum inhibitory concentration (MIC) of AgNP to C. sakazakii and determined the growth curve of C. sakazakii treated with different concentrations of AgNP by using the plate counting method. After determining the sub-inhibition concentrations (SIC) of AgNP on C. sakazakii, we studied the effects of AgNP on the resistance of C. sakazakii to heat, desiccation, osmotic pressure, and acid. The antibiofilm activity of AgNP was also studied. Finally, real-time quantitative PCR was used to analyze the transcription levels of 16 genes related to the environmental tolerance of C. sakazakii. The SIC of AgNP significantly reduced the survival rate of C. sakazakii under various environmental stress conditions. The results showed that AgNP at 0.625 and 1.25 µg/mL significantly inhibited the formation of C. sakazakii biofilms. The expression levels of most genes were significantly downregulated in C. sakazakii cells treated with 0.625 and 1.25 µg/mL AgNP. Therefore, AgNP may reduce the environmental tolerance of C. sakazakii by inhibiting the expression of genes related to stress tolerance. Moreover, AgNP inhibited the production of ATP in C. sakazakii cells and the formation of C. sakazakii biofilms. Our research provides a theoretical basis for the application of AgNP in food packaging, bactericidal coatings, and other fields.


Asunto(s)
Cronobacter sakazakii , Nanopartículas del Metal , Animales , Biopelículas , Cronobacter sakazakii/genética , Pruebas de Sensibilidad Microbiana/veterinaria , Plata/farmacología
9.
Angew Chem Int Ed Engl ; 59(16): 6585-6589, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32017343

RESUMEN

A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high-energy-density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni-rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space-charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high-voltage Li-metal batteries, innovating the design philosophy of functional CEI strategy for future high-energy-density batteries.

10.
J Am Chem Soc ; 141(23): 9165-9169, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31141357

RESUMEN

The fast-ionic-conducting ceramic electrolyte is promising for next-generation high-energy-density Li-metal batteries, yet its application suffers from the high interfacial resistance and poor interfacial stability. In this study, the compatible solid-state electrolyte was designed by coating Li1.4Al0.4Ti1.6(PO4)3 (LATP) with polyacrylonitrile (PAN) and polyethylene oxide (PEO) oppositely to satisfy deliberately the disparate interface demands. Wherein, the upper PAN constructs soft-contact with LiNi0.6Mn0.2Co0.2O2, and the lower PEO protects LATP from being reduced, guaranteeing high-voltage tolerance and improved stability toward Li-metal anode performed in one ceramic. Moreover, the core function of LATP is amplified to guide homogeneous ions distribution and hence suppresses the formation of a space-charge layer across interfaces, uncovered by the COMSOL Multiphysics concentration field simulation. Thus, such a bifunctional modified ceramic electrolyte integrates the respective superiority to render Li-metal batteries with excellent cycling stability (89% after 120 cycles), high Coulombic efficiency (exceeding 99.5% per cycle), and a dendrite-free Li anode at 60 °C, which represents an overall design of ceramic interface engineering for future practical solid battery systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA