Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 309: 114679, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35176569

RESUMEN

Water related problems, including water scarcity and pollution, have become increasingly urgent challenges especially in arid and semiarid regions. Two-dimensional water trading (2DWT) mechanism has been designed to unify the quantity and quality of water for relieving the water crisis. This study aims to develop a risk aversion optimization-two dimensional water trading model (RAO-2DWTM) for planning the regional-scale water resources management system (RWMS). This is the first attempt on planning RWMS through risk aversion optimization within the two-dimensional water trading framework. RAO-2DWTM cannot only support in-depth analysis regarding the effect of decision maker's preferences on system risk in different trading scenarios, but also reflect the interaction between water right trading and effluent trading, as well as disclose the optimal scheme of water resource management under uncertainties. Twenty four scenarios associated with different trading scenarios and robust levels are analyzed. The optimization scheme under the optimal risk control level is determined based on TOPSIS. Results revealed that 2DWT would bring high benefit with reduced risk cost, water deficit and emissions, implying the effectiveness of 2DWT mechanism. The results also disclosed that risk aversion behavior can mitigate water scarcity and pollution, as well as reduce risk cost, but may lead to some losses of system benefit. Consequently, decision makers should make trade-offs between system benefit and risk in identifying desired trading schemes.


Asunto(s)
Desarrollo Sostenible , Agua , China , Incertidumbre , Contaminación del Agua/prevención & control , Recursos Hídricos
2.
Environ Sci Pollut Res Int ; 31(32): 44920-44937, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954332

RESUMEN

In the context of China's green development and "dual carbon" goal, urbanization, as a way to achieve Chinese modernization, has a particularly important effect on green and low-carbon economic development. Firstly, this paper empirically analyzed the influence of urbanization on per capita carbon emissions using Chinese city data and a panel fixed-effects model. Then, the impact mechanisms of urbanization on carbon emissions were examined from both the demand and supply sides. Finally, we analyzed the differences in the transmission mechanisms of urbanization affecting carbon emissions in the eastern, central, and western regions. The results show that (1) urbanization increases per capita carbon emissions. However, this effect shows inter-regional differences, with more significant promotion effects in the eastern and central regions; (2) on the demand side, the residents' consumption intensity can drive carbon emissions, while the rise of human capital agglomeration suppresses carbon emissions; on the supply side, industrial structure can drive carbon emissions, while the increase of green technological innovation suppresses carbon emissions; (3) the consumption effect and the industry effect play a major role in the eastern and central regions, while the intermediary effect is not obvious in the western region. This study can provide important insights for synergizing urbanization and achieving carbon reduction commitments.


Asunto(s)
Carbono , Urbanización , China , Carbono/análisis , Humanos , Ciudades , Contaminantes Atmosféricos/análisis , Desarrollo Económico , Contaminación del Aire
3.
Artículo en Inglés | MEDLINE | ID: mdl-36767085

RESUMEN

As the world's largest developing country, China is facing the serious challenge of reducing carbon emissions. The objective of this study is to investigate how China's aging population affects carbon emissions from the production and consumption sides based on an improved Kaya model. The advantage of the Kaya model is that it links economic development to carbon dioxide generated by human activities, which makes it possible to effectively analyze carbon emissions in relation to the structure of energy consumption and human activities. Based on different energy consumption structures and technological innovation levels, a threshold effect model is constructed. The results show that: (1) There is an inverted U-shaped curve relationship between population aging and carbon emissions in China. (2) Energy consumption structure and technological innovation thresholds can be derived for the impact of population aging on carbon emissions, with thresholds of 3.275 and 8.904 identified, respectively. (3) Population aging can reduce carbon emissions when the energy consumption structure does not exceed the threshold value. (4) There is no significant intervention effect of technological innovation on the relationship between population aging and carbon emissions. Based on the research results, some countermeasures and suggestions to reduce carbon emissions are proposed.


Asunto(s)
Dióxido de Carbono , Desarrollo Económico , Humanos , Anciano , Dióxido de Carbono/análisis , China
4.
Artículo en Inglés | MEDLINE | ID: mdl-34948707

RESUMEN

The conflict between excessive population development and vulnerable resource (including water, food, and energy resources) capacity influenced by multiple uncertainties can increase the difficulty of decision making in a big city with large population scale. In this study, an adaptive population and water-food-energy (WFE) management framework (APRF) incorporating vulnerability assessment, uncertainty analysis, and systemic optimization methods is developed for optimizing the relationship between population development and WFE management (P-WFE) under combined policies. In the APRF, the vulnerability of WFE was calculated by an entropy-based driver-pressure-state-response (E-DPSR) model to reflect the exposure, sensitivity, and adaptability caused by population growth, economic development, and resource governance. Meanwhile, a scenario-based dynamic fuzzy model with Hurwicz criterion (SDFH) is proposed for not only optimizing the relationship of P-WFE with uncertain information expressed as possibility and probability distributions, but also reflecting the risk preference of policymakers with an elected manner. The developed APRF is applied to a real case study of Beijing city, which has characteristics of a large population scale and resource deficit. The results of WFE shortages and population adjustments were obtained to identify an optimized P-WEF plan under various policies, to support the adjustment of the current policy in Beijing city. Meanwhile, the results associated with resource vulnerability and benefit analysis were analyzed for improving the robustness of policy generation.


Asunto(s)
Políticas , Recursos Hídricos , Ciudades , Modelos Teóricos , Probabilidad , Incertidumbre
5.
Sci Total Environ ; 630: 469-486, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29486441

RESUMEN

Contradictions of increasing carbon mitigation pressure and electricity demand have been aggravated significantly. A heavy emphasis is placed on analyzing the carbon mitigation potential of electric energy systems via tradable green certificates (TGC). This study proposes a tradable green certificate (TGC)-fractional fuzzy stochastic robust optimization (FFSRO) model through integrating fuzzy possibilistic, two-stage stochastic and stochastic robust programming techniques into a linear fractional programming framework. The framework can address uncertainties expressed as stochastic and fuzzy sets, and effectively deal with issues of multi-objective tradeoffs between the economy and environment. The proposed model is applied to the major economic center of China, the Beijing-Tianjin-Hebei region. The generated results of proposed model indicate that a TGC mechanism is a cost-effective pathway to cope with carbon reduction and support the sustainable development pathway of electric energy systems. In detail, it can: (i) effectively promote renewable power development and reduce fossil fuel use; (ii) lead to higher CO2 mitigation potential than non-TGC mechanism; and (iii) greatly alleviate financial pressure on the government to provide renewable energy subsidies. The TGC-FFSRO model can provide a scientific basis for making related management decisions of electric energy systems.

6.
Sci Total Environ ; 633: 1613-1628, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29758911

RESUMEN

In this study, a hybrid land-water-environment (LWE) model is developed for identifying ecological effect and risk under uncertain precipitation in an agroforestry ecosystem. A simulation-based fuzzy-stochastic programming with risk analysis (SFSR) method is used into LWE model to reflect the meteorological impacts; meanwhile, it also can quantify artificial fuzziness (e.g., risk attitude of policymaker) and natural vagueness (e.g., ecological function) in decision-making. The developed LWE model with SFSR method is applied to a practical agroforestry ecosystem in China. Results of optimized planting scale, irrigative water schedule, pollution mitigation scheme, and system benefit under changed rainfall, precise risk-adoption and vague ecological function are obtained; meanwhile their corresponding ecological effects and risks are analyzed. It found that current LWE plans could generate massive water deficits (e.g., 23.22×106m3 in crop irrigation and 26.32×106m3 in forest protection at highest) due to over-cultivation and excessive pollution discharges (e.g., the highest excessive TP and TN discharges would reach 460.64 and 15.30×103 ton) due to irrational fertilization, which would increase regional ecological risks. In addition, fifteen scenarios associated with withdrawing cultivation and recovering forest based on regional environment heterogeneity (such as soil types) have been discussed to adjust current agriculture-environment policies. It found that, the excessive pollution discharges (TN and TP) could be reduced 12.95% and 18.32% at highest through ecological expansions, which would generate higher system benefits than that without withdrawing farmland and recovering forest. All above can facilitate local policymakers to modulate a comprehensive LWE with more sustainable and robust manners, achieving regional harmony between socio-economy and eco-environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA