RESUMEN
Ferroptosis, characterized by lipid accumulation in intracellular compartments, is related to acute kidney injury (AKI), but the mechanism remains obscure. In our previous study, the protective effect of augmenter of liver regeneration (ALR) on AKI was not fully clarified. In this study, we established an AKI mouse model by knocking out proximal tubule-specific ALR and an AKI cell model by inducing hypoxia, as well as enrolled AKI patients, to investigate the effects of ALR on ferroptosis and the progression of AKI. We found that ALR knockout aggravated ferroptosis and increased ROS accumulation and mitochondrial damage, whereas ALR overexpression attenuated ferroptosis through clearance of ROS and maintenance of mitochondrial morphology. Mechanistically, we demonstrated that ALR could directly bind to long-chain-fatty-acid-CoA ligase 4 (ACSL4) and further inhibit the expression of ACSL4 by interacting with certain regions. By resolution liquid chromatography coupled with triple quadruple mass spectrometry, we found that ALR could reduce the contents of polyunsaturated fatty acids, especially arachidonic acid. In addition, we showed that ALR binds to ACSL4 and attenuates oxylipin accumulation, exerting a protective effect against ferroptosis in AKI. Therefore, targeting renal ALR can attenuate ferroptosis and can offer a promising strategy for the treatment of AKI.
Asunto(s)
Lesión Renal Aguda , Ferroptosis , Animales , Humanos , Ratones , Lesión Renal Aguda/metabolismo , Apoptosis , Ligasas , Regeneración Hepática , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Neonicotinoid insecticides (NEOs) are commonly applied for pest control in China and around the world. Previous studies reported that NEOs are hepatotoxic to mammals. However, limited studies have explored the associations between NEOs exposure and liver disease. In the present study, we detected six parent NEOs (p-NEOs), including acetamiprid, thiacloprid, dinotefuran, clothianidin, imidacloprid, and thiamethoxam, and five characteristic metabolites (m-NEOs), including 5-hydroxy-imidacloprid, olefin-imidacloprid, N-desmethyl-acetamiprid, 1-methyl-3-(tetrahydro-3-furylmethyl) guanidine and 1-methyl-3-(tetrahydro-3-furyl methyl) urea, in blood samples collected from healthy donors (n = 100; females vs. males: 45 vs. 55; age: 22-91 years) and liver cancer patients (n = 274; females vs. males: 118 vs. 156; age: 11-88 years) in one hospital from Guangzhou city, South China. NEOs were frequently detected (61%-94%) in blood samples, with median concentrations ranging from 0.19 ng/mL to 1.28 ng/mL and 0.20 ng/mL to 2.03 ng/mL for healthy and liver cancer populations, respectively. olefin-imidacloprid was the most abundant NEOs in healthy and liver cancer populations, accounting for 23.4% and 20.7%, respectively. Significant positive correlations among most m-NEOs concentrations were found, and associations between m-NEOs and their corresponding p-NEOs were positively correlated. These findings indicated that the sources of m-NEOs were both endogenous and exogeneous. Females had higher median concentrations of NEOs and their metabolites than males. Moreover, the α-fetoprotein values and blood concentrations of target analytes (r = 0.428-0.601, p < 0.05) were positively correlated. Meanwhile, associations between the concentrations of p-NEOs and m-NEOs and liver cancer were found (odds ratio = 2.33-9.02, 95% confidence interval = 0.31-22.7, p < 0.05), indicating that human exposure to NEOs and their metabolites might increase the odds of liver cancer prevalence. Our work provided a new insight into the hepatotoxicity of NEOs and their metabolites, and human health risks of exposure to these pollutants warranted further studies.
Asunto(s)
Insecticidas , Neoplasias Hepáticas , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , China/epidemiología , Recolección de Datos , Femenino , Humanos , Insecticidas/análisis , Insecticidas/toxicidad , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/epidemiología , Masculino , Mamíferos , Persona de Mediana Edad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Adulto JovenRESUMEN
Neonicotinoid insecticides (NEOs) are widely used around the world. The distribution of NEOs in paired saliva and periodontal blood samples was not previously documented in China. In this study, the concentrations of six NEOs and three corresponding metabolites were measured in 188 paired saliva and periodontal blood samples collected from South China. NEOs and their metabolites were frequently detected (68-94%) in paired saliva and periodontal blood, with median levels of 0.01-0.99 ng/mL. 1-Methyl-3-(tetrahydro-3-furylmethyl) urea was the most predominant NEO in paired saliva (39%) and periodontal blood (42%). Gender-related differences in NEOs and their metabolite concentrations were found: males showed lower levels than females. We calculated the concentration ratios between saliva and periodontal blood (S/PB ratios), and found that the median S/PB ratios of NEO and their metabolites were higher than 1, indicating that NEOs and their metabolites were easily excreted via saliva. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) was measured in paired saliva and periodontal blood as a marker of oxidative stress. 8-OHdG concentrations in saliva and periodontal blood were significantly and positively correlated (p < 0.05) with the concentrations of most NEOs and their metabolites in saliva and periodontal blood samples. These findings indicated that exposure to NEOs and their metabolites is associated with oxidative stress. This study is the first to report NEOs and their metabolites in paired saliva and periodontal blood samples collected from South China.
Asunto(s)
Insecticidas/sangre , Neonicotinoides/sangre , Estrés Oxidativo/efectos de los fármacos , Periodoncio/irrigación sanguínea , Saliva/química , 8-Hidroxi-2'-Desoxicoguanosina/análisis , Adolescente , Adulto , Biomarcadores/análisis , Niño , China , Femenino , Humanos , Insecticidas/análisis , Insecticidas/metabolismo , Masculino , Persona de Mediana Edad , Neonicotinoides/análisis , Neonicotinoides/metabolismo , Adulto JovenRESUMEN
Spatial recognition memory impairment is an important complication after traumatic brain injury (TBI). We previously found that spatial recognition memory impairment can be alleviated in adenosine A2A receptor knockout (A2A R KO) mice after TBI, but the mechanism remains unclear. In the current study, we used manganese-enhanced magnetic resonance imaging and the Y-maze test to determine whether the electrical activity of neurons in the retrosplenial cortex (RSC) was reduced and spatial recognition memory was impaired in wild-type (WT) mice after moderate TBI. Furthermore, spatial recognition memory was damaged by optogenetically inhibiting the electrical activity of RSC neurons in WT mice. Additionally, the electrical activity of RSC neurons was significantly increased and spatial recognition memory impairment was reduced in A2A R KO mice after moderate TBI. Specific inhibition of A2A R in the ipsilateral RSC alleviated the impairment in spatial recognition memory in WT mice. In addition, A2A R KO improved autophagic flux in the ipsilateral RSC after injury. In primary cultured neurons, activation of A2A R reduced lysosomal-associated membrane protein 1 and cathepsin D (CTSD) levels, increased phosphorylated protein kinase A and phosphorylated extracellular signal-regulated kinase 2 levels, reduced transcription factor EB (TFEB) nuclear localization and impaired autophagic flux. These results suggest that the impairment of spatial recognition memory after TBI may be associated with impaired autophagic flux in the RSC and that A2A R activation may reduce lysosomal biogenesis through the PKA/ERK2/TFEB pathway to impair autophagic flux.
Asunto(s)
Antagonistas del Receptor de Adenosina A2/uso terapéutico , Autofagia , Lesiones Traumáticas del Encéfalo/complicaciones , Giro del Cíngulo/patología , Giro del Cíngulo/fisiopatología , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Memoria Espacial/efectos de los fármacos , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Giro del Cíngulo/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Trastornos de la Memoria/fisiopatología , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/patología , Biogénesis de OrganelosRESUMEN
Necroptosis plays an important role in the pathogenesis of acute kidney injury (AKI), and necroptosis-related interventions may therefore be an important measure for the treatment of AKI. Our previous study has shown that augmenter of liver regeneration (ALR) inhibits renal tubular epithelial cell apoptosis and regulates autophagy; however, the influence of ALR on necroptosis remains unclear. In this study, we investigated the effect of ALR on necroptosis caused by ischemia-reperfusion and the underlying mechanism. In vivo experiments indicated that kidney-specific knockout of ALR aggravated the renal dysfunction and pathological damage induced by ischemia-reperfusion. Simultaneously, the expression of renal necroptosis-associated protein receptor-interacting protein 1 (RIP1), receptor-interacting protein 3 (RIP3), and mixed-lineage kinase domain-like protein (MLKL) significantly increased. In vitro experiments indicated that overexpression of ALR decreased the expression of hypoxia-reoxygenation-induced kidney injury molecules, the inflammation-associated factor tumor necrosis factor-alpha (TNF-α), and monocyte chemotactic protein. Additionally, the expression of RIP1, RIP3, and MLKL, which are elevated after hypoxia and reoxygenation, was also inhibited by ALR overexpression. Both in vivo and in vitro results indicated that ALR has a protective effect against acute kidney injury caused by ischemia-reperfusion, and the RIP1/RIP3/MLKL pathway should be further verified as a probable necroptosis regulating mechanism.
Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Apoptosis , Humanos , Hipoxia/patología , Isquemia/patología , Riñón/metabolismo , Regeneración Hepática , Necroptosis/genética , Daño por Reperfusión/metabolismoRESUMEN
Acute kidney injury (AKI) is a common clinical disease. Ferropotosis, a new type of regulatory cell death, serves an important regulatory role in AKI. Pachymic acid (PA), a lanostanetype triterpenoid from Poria cocos, has been reported to be protective against AKI. However, the protective mechanism of PA in AKI is not yet fully understood. The present study aimed to investigate the effect and molecular mechanism of PA on ferroptosis in renal ischemia reperfusion injury in vivo. A total of 30 mice were intraperitoneally injected with 5, 10 and 20 mg/kg PA for 3 days. A bilateral renal pedicle clip was used for 40 min to induce renal ischemiareperfusion injury and establish the model. The results demonstrated that treatment with PA decreased serum creatinine and blood urea nitrogen, and ameliorated renal pathological damage. Transmission electron microscopy revealed no characteristic changes in ferroptosis in the mitochondria of the renal tissue in the highdose PA group, and only mild edema. Furthermore, treatment with PA increased glutathione expression, and decreased the expression levels of malondialdehyde and cyclooxygenase 2. Treatment with PA enhanced the protein and mRNA expression levels of the ferroptosis related proteins, glutathione peroxidase 4 (GPX4), solute carrier family 7 (cationic amino acid transporter, y+ system) member 11 (SLC7A11) and heme oxygenase 1 (HO1) in the kidney, and increased the expression levels of nuclear factor erythroid derived 2 like 2 (NRF2) signaling pathway members. Taken together, the results of the present study suggest that PA has a protective effect on ischemiareperfusion induced acute kidney injury in mice, which may be associated with the inhibition of ferroptosis in the kidneys through direct or indirect activation of NRF2, and upregulation of the expression of the downstream ferroptosis related proteins, GPX4, SLC7A11 and HO1.
Asunto(s)
Ferroptosis/efectos de los fármacos , Riñón/efectos de los fármacos , Daño por Reperfusión/prevención & control , Triterpenos/farmacología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Ciclooxigenasa 2 , Glutatión/metabolismo , Hemo-Oxigenasa 1/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Malondialdehído/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Factor 2 Relacionado con NF-E2/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Daño por Reperfusión/metabolismoRESUMEN
Recent studies have shown that after traumatic brain injury (TBI), the number of autophagosomes is markedly increased in brain cells surrounding the wound; however, whether autophagy is enhanced or suppressed by TBI remains controversial. In our study, we used a controlled cortical impact system to establish models of mild, moderate and severe TBI. In the mild TBI model, the levels of autophagy-related protein 6 (Beclin1) and autophagy-related protein 12 (ATG12)-autophagy-related protein 5 (ATG5) conjugates were increased, indicating the enhanced initiation of autophagy. Furthermore, the level of the autophagic substrate sequestosome 1 (SQSTM1) was decreased in the ipsilateral cortex. This result, together with the results observed in tandem mRFP-GFP-LC3 adeno-associated virus (AAV)-infected mice, indicates that autophagosome clearance was also increased after mild TBI. Conversely, following moderate and severe TBI, there was no change in the initiation of autophagy, and autophagosome accumulation was observed. Next, we used chloroquine (CQ) to artificially impair autophagic flux in the injured cortex of the mild TBI model and found that the severity of trauma was obviously exacerbated. In addition, autophagic flux and trauma severity were significantly improved in adenosine A2A receptor (A2AR) knockout (KO) mice subjected to moderate TBI. Thus, A2AR may be involved in regulating the impairment of autophagic flux in response to brain injury. Our findings suggest that whether autophagy is increased after TBI is associated with whether autophagic flux is impaired, and the impairment of autophagic flux exacerbates the severity of trauma. Furthermore, A2AR may be a target for alleviating the impairment in autophagic flux after TBI.
Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Autofagia/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/genética , Corteza Cerebral/metabolismo , Receptor de Adenosina A2A/genética , Triazinas/farmacología , Triazoles/farmacología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/genética , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Cloroquina/efectos adversos , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Receptor de Adenosina A2A/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Índices de Gravedad del TraumaRESUMEN
A series of neurological and psychiatric symptoms occur after traumatic brain injury (TBI), with cognitive dysfunction being one of the most prominent sequela. Given that tau hyperphosphorylation is an important cause of cognitive impairment in patients of Alzheimer's disease, our present study detected the presence of hyperphosphorylated tau (p-tau), mainly at Ser404, in multiple brain regions, including the ipsilateral parietal cortex, contralateral hippocampus and prefrontal cortex, immediately after the injury in a mouse TBI model; these changes lasted for at least 4w. All of these brain regions play important roles in working memory. Hyperphosphorylated tau protein was primarily located in neurons and was accompanied by axonal injury and dendritic spine degeneration. Our study demonstrated that p-tau spreads gradually and selectively from the injured cortex to other brain regions after TBI and that all of the affected regions are part of the working memory circuit. These findings provide experimental support for the role of p-tau in cognitive impairment in the early phase after TBI.