Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(23): 7004-7011, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804892

RESUMEN

Perovskite nanoplatelets (NPLs) show great potential for high-color-purity light-emitting diodes (LEDs) due to their narrow line width and high exciton binding energy. However, the performance of perovskite NPL LEDs lags far behind perovskite quantum dot-/film-based LEDs, owing to their material instability and poor carrier transport. Here, we achieved efficient and stable pure blue-emitting CsPbBr3 NPLs with outstanding optical and electrical properties by using an aromatic ligand, 4-bromothiophene-2-carboxaldehyde (BTC). The BTC ligands with thiophene groups can guide two-dimensional growth and inhibit out-of-plane ripening of CsPbBr3 NPLs, which, meanwhile, increases their structural stability via strongly interacting with PbBr64- octahedra. Moreover, aromatic structures with delocalized π-bonds facilitate charge transport, diminish band tail states, and suppress Auger processes in CsPbBr3 NPLs. Consequently, the LEDs demonstrate efficient and color-stable blue emissions at 465 nm with a narrow emission line width of 17 nm and a maximum external quantum efficiency (EQE) of 5.4%, representing the state-of-the-art CsPbBr3 NPL LEDs.

2.
Chem Soc Rev ; 52(4): 1519, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36756836

RESUMEN

Correction for 'Atomically flat semiconductor nanoplatelets for light-emitting applications' by Bing Bai et al., Chem. Soc. Rev., 2023, 52, 318-360, https://doi.org/10.1039/D2CS00130F.

3.
Chem Soc Rev ; 52(1): 318-360, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36533300

RESUMEN

The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers. This review article first introduces the intrinsic characteristics of 2D semiconductor NPLs with atomic flatness. Subsequently, the approaches and mechanisms for the controlled synthesis of atomically flat NPLs are summarized followed by an insight on recent progress in the mediation of core/shell, core/crown and core/crown@shell structures by selective epitaxial growth of passivation layers on different planes of NPLs. Moreover, an overview of the unique optical properties and the associated light-emitting applications is elaborated. Despite great progress in this research field, there are some issues relating to heavy metal elements such as Cd2+ in NPLs, and the ambiguous gain mechanisms of NPLs and others are the main obstacles that prevent NPLs from widespread applications. Therefore, a perspective is included at the end of this review article, in which the current challenges in this stimulating research field are discussed and possible solutions to tackle these challenges are proposed.

4.
Nano Lett ; 23(3): 985-992, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36715576

RESUMEN

Despite the rapid progress in perovskite light-emitting diodes (PeLEDs), the electroluminescence performance of large-area perovskite devices lags far behind that of laboratory-size ones. Here, we report a 3.5 cm × 3.5 cm large-area PeLED with a record-high external quantum efficiency of 12.1% by creating an amphipathic molecular interface modifier of betaine citrate (BC) between the perovskite layer and the underlying hole transport layer (HTL). It is found that the surface wettability for various HTLs can be efficiently improved as a result of the coexistence of methyl and carboxyl groups in the BC molecules that makes favorable groups to selectively contact with the HTL surface and increases the surface free energy, which greatly facilitates the scalable process of solution-processed perovskite films. Moreover, the luminous performance of perovskite emitters is simultaneously enhanced through the coordination between C═O in the carboxyl groups and Pb dangling bonds.

5.
Angew Chem Int Ed Engl ; 63(4): e202317446, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38030582

RESUMEN

The facile oxidation of Sn2+ to Sn4+ poses an inherent challenge that limits the efficiency and stability of tin-lead mixed (Sn-Pb) perovskite solar cells (PSCs) and all-perovskite tandem devices. In this work, we discover the sustainable redox reactions enabling self-healing Sn-Pb perovskites, where their intractable oxidation degradation can be recovered to their original state under light soaking. Quantitative and operando spectroscopies are used to investigate the redox chemistry, revealing that metallic Pb0 from the photolysis of perovskite reacts with Sn4+ to regenerate Pb2+ and Sn2+ spontaneously. Given the sluggish redox reaction kinetics, V3+ /V2+ ionic pair is designed as an effective redox shuttle to accelerate the recovery of Sn-Pb perovskites from oxidation. The target Sn-Pb PSCs enabled by V3+ /V2+ ionic pair deliver an improved power conversion efficiency (PCE) of 21.22 % and excellent device lifespan, retaining nearly 90 % of its initial PCE after maximum power point tracking under light for 1,000 hours.

6.
Appl Microbiol Biotechnol ; 107(17): 5301-5316, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421472

RESUMEN

The grim situation of bacterial infection has undoubtedly become a major threat to human health. In the context of frequent use of antibiotics, a new bactericidal method is urgently needed to fight against drug-resistant bacteria caused by non-standard use of antibiotics. Cold atmospheric plasma (CAP) is composed of a variety of bactericidal species, which has excellent bactericidal effect on microbes. However, the mechanism of interaction between CAP and bacteria is not completely clear. In this paper, we summarize the mechanisms of bacterial killing by CAP in a systematic manner, discuss the responses of bacteria to CAP treatment that are considered to be related to tolerance and their underlying mechanisms, review the recent advances in bactericidal applications of CAP finally. This review indicates that CAP inhibition and tolerance of survival bacteria are a set of closely related mechanisms and suggests that there might be other mechanisms of tolerance to survival bacteria that had not been discovered yet. In conclusion, this review shows that CAP has complex and diverse bactericidal mechanisms, and has excellent bactericidal effect on bacteria at appropriate doses. KEY POINTS: • The bactericidal mechanism of CAP is complex and diverse. • There are few resistant bacteria but tolerant bacteria during CAP treatment. • There is excellent germicidal effect when CAP in combination with other disinfectants.


Asunto(s)
Antiinfecciosos , Desinfectantes , Gases em Plasma , Humanos , Gases em Plasma/farmacología , Antibacterianos/farmacología , Bacterias , Desinfectantes/farmacología
7.
Angew Chem Int Ed Engl ; 61(35): e202205978, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35679132

RESUMEN

It is challenging to establish single metal atoms with a uniform coordination environment at targeted sites of a zeolite. In this study, single platinum atoms were selectively encaged in the six-membered rings of sodalite (SOD) cages within Y zeolite using a template-guiding strategy. During the in situ synthesis process, template molecules were designed to occupy supercages and thereby force coordinated platinum species into SOD cages. Subsequent control of the post-treatment conditions yielded the Y zeolite with selectively encaged single platinum atoms, denoted Pt@Y-SOD. The Pt@Y-SOD catalyst had good stability and excellent catalytic selectivity in the semihydrogenation reaction, and it exhibited interesting thiophene and carbon monoxide resistance in this transformation because interactions with these poisons are weakened by the configuration of the encaged single platinum atoms.

8.
Reproduction ; 161(6): 623-632, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33784242

RESUMEN

Preeclampsia is a gestational hypertensive disease; however, preeclampsia remains poorly understood. Bioinformatics analysis was applied to find novel genes involved in the pathogenesis of preeclampsia and identified CLDN1 as one of the most differentially expressed genes when comparing patients with preeclampsia and healthy controls. The results of the qRT-PCR, Western blotting and immunohistochemistry experiments demonstrated that CLDN1 was significantly downregulated in the chorionic villi in samples from patients with preeclampsia. Furthermore, knockdown of CLDN1 in HTR-8/SVneo cells resulted in the inhibition of proliferation and induction of apoptosis, and overexpression of CLDN1 reversed these effects. In addition, RNA-seq assays demonstrated that the gene BIRC3 is potentially downstream of CLDN1 and is involved in the regulation of apoptosis. Knockdown of CLDN1 confirmed that the expression level of BIRC3 was obviously decreased and was associated with a significant increase in cleaved PARP. Interestingly, the apoptotic effect in CLDN1 knockdown cells was rescued after BIRC3 overexpression. Overall, these results indicate that a decrease in CLDN1 inhibits BIRC3 expression and increases cleaved PARP levels thus participating in the pathogenesis of preeclampsia.


Asunto(s)
Apoptosis , Proliferación Celular , Claudina-1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Preeclampsia/patología , Trofoblastos/patología , Adulto , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/genética , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Estudios de Casos y Controles , Movimiento Celular , Claudina-1/genética , Femenino , Humanos , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , Trofoblastos/metabolismo
9.
Angew Chem Int Ed Engl ; 60(44): 23735-23742, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34410033

RESUMEN

Simplified perovskite solar cells (PSCs) were fabricated with the perovskite layer sandwiched and encapsulated between carbon-based electron transport layer (ETL) and counter electrode (CE) by a fully blade-coated process. A self-assembled monolayer of amphiphilic silane (AS) molecules on transparent conducting oxide (TCO) substrate appeals to the fullerene ETL deposition and preserves its integrity against the solvent damage. The AS serves as a "molecular glue" to strengthen the adhesion toughness at the TCO/ETL interface via robust chemical interaction and bonding, facilitating the interfacial charge extraction, increasing PCEs by 77 % and reducing hysteresis. A PCE of 18.64 % was achieved for the fully printed devices, one of the highest reported for carbon-based PSCs. AS-assisted interfacial linkage and carbon-material-assisted self-encapsulation enhance the stability of the PSCs, which did not experience performance degradation when stored at ambient conditions for over 3000 h.

10.
Reproduction ; 160(2): 293-305, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32585639

RESUMEN

Protein disulfide isomerase 3 (PDIA3) is a chaperone protein that modulates the folding of newly synthesized glycoproteins, has isomerase and redox activity, and has been implicated in the pathogenesis of many diseases. However, the role of PDIA3 in pregnancy-associated diseases remains largely unknown. Our present study reveals a key role for PDIA3 in the biology of placental trophoblasts from women with preeclampsia (PE). Immunohistochemistry and Western blot analysis revealed that PDIA3 expression was decreased in villous trophoblasts from women with PE compared to normotensive pregnancies. Further, using a Cell Counting Kit-8 assay, flow cytometry, and 5-ethynyl-2'-deoxyuridine (EdU) staining, we found that siRNA-mediated PDIA3 knockdown significantly promoted apoptosis and inhibited proliferation in the HTR8/SVneo cell line, while overexpression of PDIA3 reversed these effects. Furthermore, RNA sequencing and Western blot analysis demonstrated that knockdown of PDIA3 inhibited MDM2 protein expression in HTR8 cells, concurrent with marked elevation of p53 and p21 expression. Conversely, overexpression of PDIA3 had the opposite effects. Immunohistochemistry and Western blot further revealed that MDM2 protein expression was downregulated and p21 was increased in trophoblasts of women with PE compared to women with normotensive pregnancies. Our findings indicate that PDIA3 expression is decreased in the trophoblasts of women with PE, and decreased PDIA3 induces trophoblast apoptosis and represses trophoblast proliferation through regulating the MDM2/p53/p21 pathway.


Asunto(s)
Apoptosis , Proliferación Celular , Regulación de la Expresión Génica , Placenta/patología , Preeclampsia/patología , Proteína Disulfuro Isomerasas/metabolismo , Trofoblastos/patología , Estudios de Casos y Controles , Femenino , Humanos , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , Proteína Disulfuro Isomerasas/genética , Proteínas Proto-Oncogénicas c-mdm2 , Trofoblastos/metabolismo
11.
Arch Biochem Biophys ; 672: 108052, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31351069

RESUMEN

Vascular disease is one of the most significant threats to the lives of patients suffering from diabetes, and chronic exposure of vascular endothelial cells to high glucose has been shown to significantly contribute to the process of endothelial cell dysfunction, one of the earliest events in diabetes-associated vascular disease. Nucleotide oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3) inflammasome plays a key role in initiating the inflammatory process by facilitating the production of interleukin-1ß (IL-1ß) and IL-18. ASC and caspase 1 are also implicated in NLRP3 inflammasome-mediated chronic inflammation. While under normal conditions, a balance exists between oxidants and antioxidants, exposure to high glucose significantly increases the production of ROS, which is enhanced by NOX4 expression. In the present study, we explored the role of orexin A, an endogenous peptide produced in the hypothalamus, in high glucose-induced activation of the NLRP3 inflammasome, oxidative stress, and expression of several key cytokines. Our findings demonstrate that orexin A exerts potent antioxidant effects in human aortic endothelial cells exposed to high glucose by inhibiting mitochondrial ROS and expression of NOX4 at both the mRNA and protein levels as revealed by MitoSOX staining, real-time PCR, and Western blot analysis. We also show that orexin A inhibits high glucose-induced expression of TxNIP, which is crucial to the activation of the NLRP3 inflammasome, as well as that of HMGB1. We confirmed via real-time PCR and Western blot analysis that orexin A suppressed the production of the inflammatory cytokines IL-1ß and IL-18. Additionally, through SIRT1 knockdown siRNA experimentation, we confirmed that SIRT1 knockdown abolishes the effects of orexin A described above, thereby indicating a critical role of SIRT in the capacity of orexin A to ameliorate high glucose-induced oxidative stress and activation of NLRP3 inflammasome.


Asunto(s)
Antioxidantes/farmacología , Glucosa/farmacología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Orexinas/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Células Endoteliales , Técnicas de Silenciamiento del Gen , Proteína HMGB1/antagonistas & inhibidores , Humanos , Inflamasomas/efectos de los fármacos , Interleucina-18/antagonistas & inhibidores , Interleucina-1beta/antagonistas & inhibidores , NADPH Oxidasa 4/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
12.
Nanotechnology ; 30(14): 145602, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30630155

RESUMEN

Cesium lead halide perovskite nanocrystals are photoelectric nanomaterials that have potential applications in a variety of areas due to their excellent photoelectric and tunable photo luminescent properties. In this work, we investigate the synergetic effects of reaction temperature, reaction-capillary length and flow rate on the growth kinetics of perovskite nanocrystals in a PTFE-based microsystem and the photoluminescence characteristics of the perovskite nanocrystals both on-line and off-line. The on-line measurement finds that increasing the reaction temperature leads to the increase of the wavelength of the PL emission peak of the synthesized nanocrystals and reduces the average size of the perovskite nanocrystals synthesized in long reaction-capillaries. The intensity of the PL emission peak of the nanocrystals synthesized at different reaction temperatures decreases with the increase of the flow rate. The off-line measurement reveals that increasing the flow rate generally leads to the blueshift of the PL emission peaks and the decrease of the average size of the perovskite nanocrystals synthesized at the reaction temperature of 160 °C in the capillary length of 60 cm. Increasing temperature leads to the increase of the emission wavelength of the perovskite nanocrystals from 560 to 608 nm. The temperature dependence of the average size of the synthesized nanocrystals with the same synthesis conditions at different temperatures can be described by the Arrhenius relationship with an activation energy of 8.54 kJ mol-1. Five different cross-sections of the synthesized perovskite nanocrystals are observed, including rhombus, hexagon, rectangle, square and quadrangle with three of them being observed for the first time.

13.
Biochem Biophys Res Commun ; 503(3): 1186-1193, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30031611

RESUMEN

This study aimed to investigate whether recombinant human brain natriuretic peptide (rhBNP) regulated hypoxia-induced injury in H9c2 cardiomyocytes through lncRNA EGOT. H9c2 cardiomyocytes were cultured under normoxia and hypoxia (21% and 3% O2) conditions, and whether hypoxia induced injury by assessing cell viability, apoptosis and autophagy. H9c2 cells were then treated with different doses of exogenous rhBNP (200, 600 and 900 nmol/L, respectively) and the effects of rhBNP on hypoxia-induced injury in H9c2 cells as well as the expression of EGOT were studied. In addition, the regulatory relationships between rhBNP and EGOT as well as between rhBNP and PI3K/AKT/mTOR pathway in hypoxia-treated H9c2 cells were investigated. Hypoxia significantly induced injury in H9c2 cells (inhibited cell viability and promoted cell apoptosis and autophagy) and decreased the expression of EGOT. However, administration of rhBNP alleviated hypoxia-induced injury in H9c2 cells and elevated expression of EGOT. Suppression of EGOT significantly reversed the effects of rhBNP on hypoxia-induced injury in H9c2 cells. Further studies showed that the effects of EGOT on cell viability and apoptosis were by positively regulating the expression of Cyclin D1. Moreover, rhBNP alleviated hypoxia-induced cell injury by activating PI3K/AKT/mTOR pathway in H9c2 cells. Our results reveal that rhBNP may play a protective role in attenuating hypoxia-induced injury in H9c2 cardiomyocytes via regulating lncRNA EGOT/Cyclin D1/PI3K/AKT/mTOR pathway axis. The findings will provide a new strategy for the treatment of heart failure induced by hypoxia.


Asunto(s)
Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Células Cultivadas , Humanos , Hipoxia , Miocitos Cardíacos/patología , Proteínas Recombinantes/metabolismo
14.
Magn Reson Chem ; 56(3): 190-195, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29172023

RESUMEN

The local distortions and electron paramagnetic resonance parameters for Cu2+ in the mixed alkali borate glasses xNa2 O-(30-x)K2 O-70B2 O3 (5 ≤ x ≤ 25 mol%) are theoretically studied with distinct modifier Na2 O compositions x. Owing to the Jahn-Teller effect, the octahedral [CuO6 ]10- clusters show significant tetragonal elongation ratios p ~19% along the C4 axis. With the increase of composition x, the cubic field parameter Dq and the orbital reduction factor k exhibit linearly and quasi-linearly decreasing tendencies, respectively, whereas the relative tetragonal elongation ratio p has quasi-linearly increasing rule with some fluctuations, leading to the minima of g factors at x = 10 mol%. The composition dependences of the optical spectra and the electron paramagnetic resonance parameters are suitably reproduced by the linear or quasi-linear relationships of the relevant quantities (i.e., Dq, k, and p) with x. The above composition dependences are analyzed from mixed alkali effect, which brings forward the modifications of the local crystal-fields and the electronic cloud distribution around Cu2+ with the variation of the composition of Na2 O.

15.
Phys Chem Chem Phys ; 16(34): 18341-8, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-25070424

RESUMEN

N-Substituted aminomethylphenol (Mannich base) and 3,4-dihydro-2H-3-substituted 1,3-benzoxazine (benzoxazine) were synthesized from substituted phenol (p-cresol, phenol, p-chlorophenol), substituted aniline (p-toluidine, aniline, p-chloroaniline) and formaldehyde to study influence of substituent on equilibrium of benzoxazine synthesis from Mannich base and formaldehyde. (1)H-NMR and charges of nitrogen and oxygen atoms illustrate effect of substituent on reactivity of Mannich base, while oxazine ring stability is characterized by differential scanning calorimetry (DSC) and C-O bond order. Equilibrium constants were tested from 50 °C to 80 °C, and the results show that substituent attached to phenol or aniline has same impact on reactivity of Mannich base; however, it has opposite influence on oxazine ring stability and equilibrium constant. Compared with the phenol-aniline system, electron-donating methyl on phenol or aniline increases the charge of nitrogen and oxygen atoms in Mannich base. When the methyl group is located at para position of phenol, oxazine ring stability increases, and the equilibrium constant climbs, whereas when the methyl group is located at the para position of aniline, oxazine ring stability decreases, the benzoxazine hydrolysis tends to happen and equilibrium constant is significantly low.

16.
ISA Trans ; 149: 307-313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677888

RESUMEN

For nonlinear systems with continuous dynamic and discrete measurements, a Log-Euclidean metric (LEM) based novel scheme is proposed to refine the covariance integration steps of continuous-discrete Extended Kalman filter (CDEKF). In CDEKF, the covariance differential equation is usually integrated with regular Euclidean matrix operations, which actually ignores the Riemannian structure of underlying space and poses a limit on the further improvement of estimation accuracy. To overcome this drawback, this work proposes to define the covariance variable on the manifold of symmetric positive definite (SPD) matrices and propagate it using the Log-Euclidean metric. To embed the LEM based novel propagation scheme, the manifold integration of the covariance for LEMCDEKF is proposed together with the details of efficient realization, which can integrate the covariance on SPD manifold and avoid the drawback of Euclidean scheme. Numerical simulations certify the new method's superior accuracy than conventional methods.

17.
iScience ; 27(5): 109578, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638573

RESUMEN

In this study, a method was developed to create oxygen vacancies in Cu2O/TiO2 heterojunctions. By varying the amounts of ethylenediaminetetraacetic acid (EDTA), sodium citrate, and copper acetate, Cu2O/TiO2 with different Cu ratios were synthesized. Tests on CO2 photocatalytic reduction revealed that Cu2O/TiO2's performance is influenced by Cu content. The ideal Cu mass fraction in Cu2O/TiO2, determined by inductively coupled plasma (ICP), is between 0.075% and 0.55%, with the highest CO yield being 10.22 µmol g-1 h-1, significantly surpassing pure TiO2. High-resolution transmission electron microscopy and electron paramagnetic resonance studies showed optimal oxygen vacancy in the most effective heterojunction. Density functional theory (DFT) calculations indicated a 0.088 eV lower energy barrier for ∗CO2 to ∗COOH conversion in Cu2O/TiO2 with oxygen vacancy compared to TiO2, suggesting that oxygen vacancies enhance photocatalytic activity.

18.
ACS Nano ; 18(1): 67-88, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38131195

RESUMEN

With a stacking-layered architecture, the bilayer two-dimensional-three-dimensional (2D-3D) perovskite heterostructure (PHS) not only eliminates surface defects but also protects the 3D perovskite matrix from external stimuli. However, these bilayer 2D-3D PHSs suffer from impaired interfacial charge carrier transport due to the relatively insulating 2D perovskite fragments with a random phase distribution. Over the past decade, substantial efforts have been devoted to pioneering molecular and structural designs of the 2D perovskite interlayers for improving their charge carrier mobility, which enables state-of-the-art perovskite solar cells with high power conversion efficiency and exceptional operational stability. Herein, this review offers a comprehensive and up-to-date overview on the recent progress of bilayer 2D-3D PHSs, encompassing advancements on spacer cation engineering, interfacial charge carrier modification, advanced deposition protocols, and characterization techniques. Then, the evolutionary trajectory of bilayer 2D-3D PHSs is outlined by summarizing its mainstream development trends, followed by a perspective discussion about its future research opportunities toward efficient and durable perovskite solar cells.

19.
Small Methods ; : e2301633, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682581

RESUMEN

Metal halide perovskites emerge as promising semiconductors for optoelectronic devices due to ease of fabrication, attractive photophysical properties, their low cost, highly tunable material properties, and high performance. High-quality thin films of metal halide perovskites are the basis of most of these applications including solar cells, light-emitting diodes, photodetectors, and electronic memristors. A typical fabrication method for perovskite thin films is the solution method, which has several limitations in device reproducibility, adverse environmental impact, and utilization of raw materials. Thermal evaporation holds great promise in addressing these bottlenecks in fabricating high-quality halide perovskite thin films. It also has high compatibility with mass-production platforms that are well-established in industries. This review first introduces the basics of the thermal evaporation method with a particular focus on the critical parameters influencing the thin film deposition. The research progress of the fabrication of metal halide perovskite thin films is further summarized by different thermal evaporation approaches and their applications in solar cells and other optoelectronic devices. Finally, research challenges and future opportunities for both fundamental research and commercialization are discussed.

20.
Comput Struct Biotechnol J ; 24: 292-305, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38681133

RESUMEN

Sepsis, a life-threatening medical condition, manifests as new or worsening organ failures due to a dysregulated host response to infection. Many patients with sepsis have manifested a hyperinflammatory phenotype leading to the identification of inflammatory modulation by corticosteroids as a key treatment modality. However, the optimal use of corticosteroids in sepsis treatment remains a contentious subject, necessitating a deeper understanding of their physiological and pharmacological effects. Our study conducts a comprehensive review of randomized controlled trials (RCTs) focusing on traditional corticosteroid treatment in sepsis, alongside an analysis of evolving clinical guidelines. Additionally, we explore the emerging role of artificial intelligence (AI) in medicine, particularly in diagnosing, prognosticating, and treating sepsis. AI's advanced data processing capabilities reveal new avenues for enhancing corticosteroid therapeutic strategies in sepsis. The integration of AI in sepsis treatment has the potential to address existing gaps in knowledge, especially in the application of corticosteroids. Our findings suggest that combining corticosteroid therapy with AI-driven insights could lead to more personalized and effective sepsis treatments. This approach holds promise for improving clinical outcomes and presents a significant advancement in the management of this complex and often fatal condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA