Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 34(3-4): 166-178, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919188

RESUMEN

Oocytes are indispensable for mammalian life. Thus, it is important to understand how mature oocytes are generated. As a critical stage of oocytes development, meiosis has been extensively studied, yet how chromatin remodeling contributes to this process is largely unknown. Here, we demonstrate that the ATP-dependent chromatin remodeling factor Snf2h (also known as Smarca5) plays a critical role in regulating meiotic cell cycle progression. Females with oocyte-specific depletion of Snf2h are infertile and oocytes lacking Snf2h fail to undergo meiotic resumption. Mechanistically, depletion of Snf2h results in dysregulation of meiosis-related genes, which causes failure of maturation-promoting factor (MPF) activation. ATAC-seq analysis in oocytes revealed that Snf2h regulates transcription of key meiotic genes, such as Prkar2b, by increasing its promoter chromatin accessibility. Thus, our studies not only demonstrate the importance of Snf2h in oocyte meiotic resumption, but also reveal the mechanism underlying how a chromatin remodeling factor can regulate oocyte meiosis.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Factor Promotor de Maduración/genética , Meiosis/genética , Oogénesis/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Mesotelina , Ratones , Oocitos/citología , Transcriptoma
2.
Trends Genet ; 39(5): 340-341, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907722

RESUMEN

Understanding a remarkable event at the start of life, the oocyte-to-embryo transition (OET), has remained elusive, especially in humans. Using newly developed techniques, Liu et al. showed that human maternal mRNAs undergo global poly(A) tail-mediated remodeling during OET, identified the enzymes involved, and demonstrated the essentiality of remodeling for embryo cleavage.


Asunto(s)
Oocitos , ARN Mensajero Almacenado , Humanos , ARN Mensajero
3.
Plant J ; 114(1): 55-67, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36703577

RESUMEN

Drought stress is one of the major constraints of global crop production. Raffinose, a non-reducing trisaccharide, has been considered to regulate positively the plant drought stress tolerance; however, evidence that augmenting raffinose production in leaves results in enhanced plant drought stress tolerance is lacking. The biochemical mechanism through which raffinose might act to mitigate plant drought stress remains unidentified. ZmRAFS encodes Zea mays RAFFINOSE SYNTHASE, a key enzyme that transfers galactose from the galactoside galactinol to sucrose for raffinose production. Overexpression of ZmRAFS in maize increased the RAFS protein and the raffinose content and decreased the water loss of leaves and enhanced plant drought stress tolerance. The biomass of the ZmRAFS overexpressing plants was similar to that of non-transgenic control plants when grown under optimal conditions, but was significantly greater than that of non-transgenic plants when grown under drought stress conditions. In contrast, the percentage of water loss of the detached leaves from two independent zmrafs mutant lines, incapable of synthesizing raffinose, was greater than that from null segregant controls and this phenomenon was partially rescued by supplementation of raffinose to detached zmrafs leaves. In addition, while there were differences in water loss among different maize lines, there was no difference in stomata density or aperture. Taken together, our work demonstrated that overexpression of the ZmRAFS gene in maize, in contrast to Arabidopsis, increased the raffinose content in leaves, assisted the leaf to retain water, and enhanced the plant drought stress tolerance without causing a detectable growth penalty.


Asunto(s)
Arabidopsis , Zea mays , Zea mays/metabolismo , Rafinosa , Resistencia a la Sequía , Arabidopsis/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Sequías , Plantas Modificadas Genéticamente/metabolismo , Agua/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
4.
Exp Eye Res ; 244: 109946, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815794

RESUMEN

Photobiomodulation (PBM) therapy uses light of different wavelengths to treat various retinal degeneration diseases, but the potential damage to the retina caused by long-term light irradiation is still unclear. This study were designed to detect the difference between long- and short-wavelength light (650-nm red light and 450-nm blue light, 2.55 mW/cm2, reference intensity in PBM)-induced injury. In addition, a comparative study was conducted to investigate the differences in retinal light damage induced by different irradiation protocols (short periods of repeated irradiation and a long period of constant irradiation). Furthermore, the protective role of PARP-1 inhibition on the molecular mechanism of blue light-induced injury was confirmed by a gene knockdown technique or a specific inhibitor through in vitro and in vivo experiments. The results showed that the susceptibility to retinal damage caused by irradiation with long- and short-wavelength light is different. Shorter wavelength lights, such as blue light, induce more severe retinal damage, while the retina exhibits better resistance to longer wavelength lights, such as red light. In addition, repeated irradiation for short periods induces less retinal damage than constant exposure over a long period. PARP-1 plays a critical role in the molecular mechanism of blue light-induced damage in photoreceptors and retina, and inhibiting PARP-1 can significantly protect the retina against blue light damage. This study lays an experimental foundation for assessing the safety of phototherapy products and for developing target drugs to protect the retina from light damage.


Asunto(s)
Luz , Poli(ADP-Ribosa) Polimerasa-1 , Retina , Degeneración Retiniana , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ratones , Luz/efectos adversos , Retina/efectos de la radiación , Retina/patología , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/prevención & control , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/metabolismo , Modelos Animales de Enfermedad , Western Blotting , Masculino , Terapia por Luz de Baja Intensidad , Luz Azul
5.
J Assist Reprod Genet ; 41(6): 1661-1667, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38530512

RESUMEN

AIMS: Hypertensive disorders of pregnancy (HDP) is a unique disease during gestational period, which is detrimental to pregnancy outcome. This study examined the clinical significance of long non-coding RNA GAS5 in gestational hypertension (GH) and preeclampsia (PE), aiming to explore potential biomarkers for the disease detection. METHODS: 180 pregnant women with HPD including 90 cases with GH and 90 cases with PE, and another 100 healthy pregnant women were enrolled. Serum GAS5 levels were measured by RT-qPCR method. The diagnostic performance of GAS5 was assessed in GH and PE through plotting receiver operating characteristic (ROC) curve. Logistic regression was applied for the identification of independent factors. RESULTS: Elevated serum GAS5 was identified in GH patients, and its diagnostic performance in discriminating GH cases from healthy people was determined by ROC curve. Serum GAS5 was positively associated with SBP, DBP, LDL-C and CRP values. Cases with PE had an increased serum GAS5 level relative to those with GH. Serum GAS5 was identified to be an independent predictor for PE, and can differentiate PE cases from GH ones. with a good diagnositc performance. Cases with high levels of serum GAS5 had a high risk of poor pregnancy outcomes. CONCLUSION: Elevated serum GAS5 could serve as an effective diagnostic biomarker in discriminating GH patients from healthy people by first trimester screening. Detection of serum GAS5 level has a certain predictive value for PE.


Asunto(s)
Biomarcadores , Hipertensión Inducida en el Embarazo , Preeclampsia , Primer Trimestre del Embarazo , ARN Largo no Codificante , Humanos , Femenino , Embarazo , ARN Largo no Codificante/genética , ARN Largo no Codificante/sangre , Preeclampsia/diagnóstico , Preeclampsia/genética , Preeclampsia/sangre , Hipertensión Inducida en el Embarazo/genética , Hipertensión Inducida en el Embarazo/diagnóstico , Hipertensión Inducida en el Embarazo/sangre , Adulto , Primer Trimestre del Embarazo/sangre , Primer Trimestre del Embarazo/genética , Biomarcadores/sangre , Curva ROC , Resultado del Embarazo/genética , Estudios de Casos y Controles
6.
Int J Neurosci ; : 1-13, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315119

RESUMEN

BACKGROUND: As a traditional medical therapy, electroacupuncture (EA) has been demonstrated to have beneficial effects on ischemic stroke-induced cognitive impairment. However, the underlying mechanism is largely unclear. METHODS: Adult rats received occlusion of the middle cerebral artery and reperfusion (MCAO/R) to establish the ischemic stroke model. Morris water maze test was performed following EA stimulation at the GV20, PC6, and KI1 acupoints in rats to test the learning and memory ability. Western blot, immunofluorescent staining, and enzyme-linked immunosorbent assay were conducted to assess the cellular and molecular mechanisms. RESULTS: EA stimulation attenuated neurological deficits. In the Morris water maze test, EA treatment ameliorated the MCAO/R-induced learning and memory impairment. Moreover, we observed that MCAO/R induced microglial activation and polarization in the ischemic hippocampus, whereas, EA treatment dampened microglial activation and inhibited M1 microglial polarization but enhanced M2 microglial polarization. EA treatment inhibited the increased expression of proinflammatory cytokines and enhanced the increased expression of anti-inflammatory cytokines. Finally, we found that EA treatment dampened microglial p38 mitogen-activated protein kinase (MAPK) phosphorylation. CONCLUSION: Collectively, our data suggested that EA treatment ameliorated cognitive impairment induced by MCAO/R and the underlying mechanism may be p38-mediated microglia polarization and neuroinflammation.

7.
Funct Integr Genomics ; 23(2): 132, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37079151

RESUMEN

Dysregulated miRNAs have been demonstrated to be associated with the progression of colon cancer. The dysregulation of miR-3133 was observed in colon cancer, but its specific function was unclear. The functional role of miR-3133 in colon cancer was investigated in this study. A total of 113 colon cancer patients were included. miR-3133 expression was evaluated by PCR. The biological effects of miR-3133 in colon cancer cells were assessed with the help of the transwell and CCK8 assay. The prognostic value of miR-3133 was estimated by a series of statistical analyses. In mechanism, the interaction between miR-3133 and RUFY3 was evaluated by luciferase reporter. The significant downregulation of miR-3133 was observed in colon cancer, which showed a significant association with the advanced TNM stage and bad survival of patients. miR-3133 and TNM stage were identified as independent prognostic indicators of colon cancer. In vitro, the overexpression of miR-3133 exerted a dramatically inhibitory effect on cellular processes of colon cancer, which were enhanced by miR-3133 knockdown. Additionally, miR-3133 could negatively regulate the luciferase activity and expression of RUFY3, which was speculated as the underlying mechanism mediating the regulatory effect of miR-3133. miR-3133 functioned as a prognostic biomarker indicating the progression and prognosis of colon cancer, and it also served as a tumor suppressor via negatively regulating RUFY3, which provides a potential therapeutic target for colon cancer.


Asunto(s)
Neoplasias del Colon , MicroARNs , Humanos , Línea Celular Tumoral , MicroARNs/genética , Regulación hacia Abajo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas del Citoesqueleto/metabolismo
8.
Analyst ; 148(16): 3931-3937, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37466370

RESUMEN

Besides being a luminescent material, cytidine 5'-monophosphate-capped gold nanoclusters (AuNCs@CMP) also show superior peroxidase-like activity which can promote TMB oxidation in the presence of H2O2, causing the solution to turn efficiently from pale to blue. However, the presence of perfluorooctane sulfonate (PFOS) in the above system inhibited TMB oxidation and bluing of the solution, consequently establishing a colorimetric platform of AuNCs/H2O2/TMB for PFOS determination. The results showed that it responded to PFOS over a wide range of 2.0-50 µM, with a limit of detection (LOD) as low as 150 nM. Furthermore, in-depth mechanism investigation revealed that, rather than the active site of the catalyst being occupied by PFOS, such a hypochromatic effect originated from depletion of the reactive oxygen species (ROS) by PFOS degradation, thereby also offering a unique strategy to scavenge the lethal toxicity of PFOS. In addition, the colorimetric response of AuNCs/H2O2/TMB to PFOS was extended to smartphone determination conveniently based on RGB values. Finally, the established platform was applied to PFOS determination both in soil extracts and in tap water with good recovery, which supplies a novel colorimetric platform for visual determination of PFOS in practice. The method has the advantages of being rapid, sensitive and highly selective, which highlight the design and construction of more systems for determination and elimination of lethal pollutants in environmental water.


Asunto(s)
Colorimetría , Nanopartículas del Metal , Colorimetría/métodos , Oro/química , Teléfono Inteligente , Peróxido de Hidrógeno , Límite de Detección , Agua , Peroxidasas , Citidina , Peroxidasa/metabolismo , Nanopartículas del Metal/química
9.
J Biochem Mol Toxicol ; 37(11): e23470, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37477183

RESUMEN

Oesophageal squamous-cell carcinoma (ESCC) is a malignant tumor of the digestive system with a poor prognosis. Recent studies have shown the promoting effect of hsa_circ_0058063 (circ_0058063) on ESCC, but the potential regulatory mechanisms of circ_0058063 in ESCC remain largely unclear. The levels of circ_0058063, microRNA-4319 (miR-4319) and mRNA of thrombospondin-1 (THBS1) were indicated by quantitative real-time polymerase chain reaction in ESCC tissues and cells. Meanwhile, the level of THBS1 was quantified by western blot analysis. In addition, the cell functions were examined by CCK8 assay, Edu assay, flow cytometry assay and transwell assay. Furthermore, the interplay between miR-4319 and circ_0058063 or THBS1 was detected by dual-luciferase reporter assay. Finally, an in vivo experiment was implemented to confirm the effect of circ_0058063. The level of circ_0058063 and THBS1 were increased, and the miR-4319 level was decreased in ESCC tissues in contrast to that in normal tissues and cells. For functional analysis, circ_0058063 deficiency inhibited cell vitality, cell proliferation, migration and invasion in ESCC cells, whereas promoted cell apoptosis. Moreover, miR-4319 was confirmed to repress the progression of ESCC cells by suppressing THBS1. In mechanism, circ_0058063 acted as a miR-4319 sponge to regulate the level of THBS1. Besides, circ_0058063 knockdown also attenuated tumour growth in vivo. Circ_0058063 facilitates the development of ESCC through increasing THBS1 expression by regulating miR-4319, which also offered an underlying targeted therapy for ESCC treatment.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Apoptosis , Proliferación Celular , Neoplasias Esofágicas/genética , MicroARNs/genética , Línea Celular Tumoral
10.
Nature ; 549(7671): 273-276, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28869969

RESUMEN

N6-methyladenosine (m6A) has been identified as the most abundant modification on eukaryote messenger RNA (mRNA). Although the rapid development of high-throughput sequencing technologies has enabled insight into the biological functions of m6A modification, the function of m6A during vertebrate embryogenesis remains poorly understood. Here we show that m6A determines cell fate during the endothelial-to-haematopoietic transition (EHT) to specify the earliest haematopoietic stem/progenitor cells (HSPCs) during zebrafish embryogenesis. m6A-specific methylated RNA immunoprecipitation combined with high-throughput sequencing (MeRIP-seq) and m6A individual-nucleotide-resolution cross-linking and immunoprecipitation with sequencing (miCLIP-seq) analyses reveal conserved features on zebrafish m6A methylome and preferential distribution of m6A peaks near the stop codon with a consensus RRACH motif. In mettl3-deficient embryos, levels of m6A are significantly decreased and emergence of HSPCs is blocked. Mechanistically, we identify that the delayed YTHDF2-mediated mRNA decay of the arterial endothelial genes notch1a and rhoca contributes to this deleterious effect. The continuous activation of Notch signalling in arterial endothelial cells of mettl3-deficient embryos blocks EHT, thereby repressing the generation of the earliest HSPCs. Furthermore, knockdown of Mettl3 in mice confers a similar phenotype. Collectively, our findings demonstrate the critical function of m6A modification in the fate determination of HSPCs during vertebrate embryogenesis.


Asunto(s)
Adenosina/análogos & derivados , Diferenciación Celular , Células Endoteliales/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , ARN Mensajero/metabolismo , Pez Cebra/embriología , Adenosina/metabolismo , Animales , Diferenciación Celular/genética , Codón de Terminación/genética , Secuencia de Consenso , Células Endoteliales/metabolismo , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Inmunoprecipitación , Metilación , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , Receptor Notch1/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
11.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240203

RESUMEN

The present study presents the tertiary assembly of a POM, peptide, and biogenic amine, which is a concept to construct new hybrid bio-inorganic materials for antibacterial applications and will help to promote the development of antivirus agents in the future. To achieve this, a Eu-containing polyoxometalate (EuW10) was first co-assembled with a biogenic amine of spermine (Spm), which improved both the luminescence and antibacterial effect of EuW10. Further introduction of a basic peptide from HPV E6, GL-22, induced more extensive enhancements, both of them being attributed to the cooperation and synergistic effects between the constituents, particularly the adaptive responses of assembly to the bacterial microenvironment (BME). Further intrinsic mechanism investigations revealed in detail that the encapsulation of EuW10 in Spm and further GL-22 enhanced the uptake abilities of EuW10 in bacteria, which further improved the ROS generation in BME via the abundant H2O2 involved there and significantly promoted the antibacterial effects.


Asunto(s)
Peroxidasa , Compuestos de Tungsteno , Compuestos de Tungsteno/farmacología , Peróxido de Hidrógeno , Péptidos , Colorantes , Antibacterianos/farmacología
12.
Yi Chuan ; 45(4): 273-278, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37077162

RESUMEN

During mammalian oocyte-to-embryo transition, before zygotic genome activation, the transcription in oocytes and embryos is silenced, so the post-transcriptional regulation of mRNA plays an essential role in this process. Poly(A) tail is an important post-transcriptional modification that affects mRNA metabolism and translation efficiency. With the development of sequencing technology and analysis tools, especially the methods based on third-generation sequencing technology, the length and composition of poly(A) tails can be accurately measured, greatly expanding our understanding of poly(A) tails in mammalian early embryonic development. This review focuses on the achievements of poly(A) tail sequencing methods and the research progress of poly(A) tail in regulating oocyte-to-embryo transition, discussing the future applications for the investigation of mammalian early embryonic development and infertility related diseases.


Asunto(s)
Oocitos , Transcriptoma , Animales , Femenino , Embarazo , Oocitos/metabolismo , Regulación de la Expresión Génica , Desarrollo Embrionario/genética , ARN Mensajero/genética , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo
13.
Plant Mol Biol ; 110(1-2): 37-52, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35583702

RESUMEN

KEY MESSAGE: An R2R3-MYB transcription factor FOUR LIPS associated with B-type Cyclin-Dependent Kinase 1;1 confers salt tolerance in rice. The Arabidopsis FOUR LIPS (AtFLP), an R2R3 MYB transcription factor, acts as an important stomatal development regulator. Only one orthologue protein of AtFLP, Oryza sativa FLP (OsFLP), was identified in rice. However, the function of OsFLP is largely unknown. In this study, we conducted RNA-seq and ChIP-seq to investigate the potential role of OsFLP in rice. Our results reveal that OsFLP is probably a multiple functional regulator involved in many biological processes in growth development and stress responses in rice. However, we mainly focus on the role of OsFLP in salt stress response. Consistently, phenotypic analysis under salt stress conditions showed that osflp exhibited significant sensitivity to salt stress, while OsFLP over-expression lines displayed obvious salt tolerance. Additionally, Yeast one-hybrid assay and electrophoretic mobility shift assay (EMSA) showed that OsFLP directly bound to the promoter region of Oryza sativa B-type Cyclin-Dependent Kinase 1;1 (OsCDKB1;1), and the expression of OsCDKB1;1 was repressed in osflp. Disturbing the expression of OsCDKB1;1 remarkably enhanced the tolerance to salt stress. Taken together, our findings reveal a crucial function of OsFLP regulating OsCDKB1;1 in salt tolerance and largely extend the knowledge about the role of OsFLP in rice.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/metabolismo , Proteína Quinasa CDC2/metabolismo , Regulación de la Expresión Génica de las Plantas , Labio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Salino/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
14.
Lab Invest ; 102(10): 1064-1074, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35810236

RESUMEN

Great advances in deep learning have provided effective solutions for prediction tasks in the biomedical field. However, accurate prognosis prediction using cancer genomics data remains challenging due to the severe overfitting problem caused by curse of dimensionality inherent to high-throughput sequencing data. Moreover, there are unique challenges to perform survival analysis, arising from the difficulty in utilizing censored samples whose events of interest are not observed. Convolutional neural network (CNN) models provide us the opportunity to extract meaningful hierarchical features to characterize cancer subtype and prognosis outcomes. On the other hand, feature selection can mitigate overfitting and reduce subsequent model training computation burden by screening out significant genes from redundant genes. To accomplish model simplification, we developed a concise and efficient survival analysis model, named CNN-Cox model, which combines a special CNN framework with prognosis-related feature selection cascaded Wx, with the advantage of less computation demand utilizing light training parameters. Experiment results show that CNN-Cox model achieved consistent higher C-index values and better survival prediction performance across seven cancer type datasets in The Cancer Genome Atlas cohort, including bladder carcinoma, head and neck squamous cell carcinoma, kidney renal cell carcinoma, brain low-grade glioma, lung adenocarcinoma (LUAD), lung squamous cell carcinoma, and skin cutaneous melanoma, compared with the existing state-of-the-art survival analysis methods. As an illustration of model interpretation, we examined potential prognostic gene signatures of LUAD dataset using the proposed CNN-Cox model. We conducted protein-protein interaction network analysis to identify potential prognostic genes and further analyzed the biological function of 13 hub genes, including ANLN, RACGAP1, KIF4A, KIF20A, KIF14, ASPM, CDK1, SPC25, NCAPG, MKI67, HJURP, EXO1, HMMR, whose high expression is significantly associated with poor survival of LUAD patients. These findings confirmed that CNN-Cox model is effective in extracting not only prognosis factors but also biologically meaningful gene features. The codes are available at the GitHub website: https://github.com/wangwangCCChen/CNN-Cox .


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Pulmonares , Melanoma , Neoplasias Cutáneas , Humanos , Cinesinas , Neoplasias Pulmonares/patología , Melanoma/genética , Proteínas del Tejido Nervioso , Redes Neurales de la Computación , Pronóstico , Melanoma Cutáneo Maligno
15.
J Hum Evol ; 171: 103251, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113226

RESUMEN

Yuanmoupithecus xiaoyuan, a small catarrhine from the Late Miocene of Yunnan in southern China, was initially suggested to be related to Miocene proconsuloids or dendropithecoids from East Africa, but subsequent reports indicated that it might be more closely related to hylobatids. Here, detailed comparisons of the material, including seven newly discovered teeth and a partial lower face of a juvenile individual, provide crucial evidence to help establish its phylogenetic relationships. Yuanmoupithecus exhibits a suite of synapomorphies that support a close phylogenetic relationship with extant hylobatids. Furthermore, based on the retention of several primitive features of the dentition, Yuanmoupithecus can be shown to be the sister taxon of crown hylobatids. The contention that Kapi ramnagarensis from the Middle Miocene of India might represent an earlier species of hylobatid is not supported here. Instead, Kapi is inferred to be a specialized pliopithecoid more closely related to Krishnapithecus krishnaii from the Late Miocene of India. Currently then, Yuanmoupithecus represents the earliest known definitively identified hylobatid and the only member of the clade predating the Pleistocene. It extends the fossil record of hylobatids back to 7-8 Ma and fills a critical gap in the evolutionary history of hominoids that has up until now remained elusive. Even so, molecular estimates of a divergence date of hylobatids from other hominoids at about 17-22 Ma signifies that there is still a substantial gap in the fossil record of more than 10 million years that needs to be filled in order to document the biogeographic origins and early evolution of hylobatids.


Asunto(s)
Evolución Biológica , Hominidae , Animales , Cercopithecidae , China , Fósiles , Filogenia
16.
Pestic Biochem Physiol ; 188: 105245, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464356

RESUMEN

Glutamine-fructose-6-phosphate transaminase (GFAT) has been reported to regulate the hexosamine biosynthetic pathway as the first rate-limiting enzyme. As a key enzyme that catalyzes the substrate of glycosylation modification, which has a wide-ranging effect on cellular functions. However, there are few studies on the relationship between GFAT and chitin metabolism in insects. In the present study, the GFAT gene from Hyphantria cunea was identified based on transcriptome and bioinformatic analysis. The role of HcGFAT in regulating development and chitin synthesis was analyzed by RNA interference (RNAi) in H. cunea larvae. The full-length HcGFAT gene (2028 bp) encodes a 676 amino acid (aa) polypeptide had typical structural features of the SIS and Gn_AT_II superfamily. Phylogenetic analyses showed that GFAT of H. cunea shares the highest homology and identity with GFAT of Ostrinia furnacalis. Expression profiles indicated that HcGFAT was expressed throughout larval, pupal and three tissues (midgut, fat body, epidermis), and highly expressed in the last instar of larvae and strongly expressed in epidermis among three tissues. Bioassay results showed that knockdown of HcGFAT repressed larval growth and development, resulting in a significant loss of larval body weight. Meanwhile, HcGFAT knockdown also significantly caused larval developmental deformity. Knockdown of HcGFAT regulated the expression of four other critical genes in the chitin synthesis pathway (HcGNA, HcPAGM, HcUAP, HcCHSA), and ultimately resulted in decreased chitin content in the epidermis. In summary, these findings indicated that GFAT plays a critical role in larval growth and development, as well as chitin synthesis in H. cunea.


Asunto(s)
Aminoácidos , Quitina , Animales , Larva/genética , Filogenia , Pupa
17.
J Integr Plant Biol ; 64(1): 56-72, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34817930

RESUMEN

During the terminal stage of stomatal development, the R2R3-MYB transcription factors FOUR LIPS (FLP/MYB124) and MYB88 limit guard mother cell division by repressing the transcript levels of multiple cell-cycle genes. In Arabidopsis thaliana possessing the weak allele flp-1, an extra guard mother cell division results in two stomata having direct contact. Here, we identified an ethylmethane sulfonate-mutagenized mutant, flp-1 xs01c, which exhibited more severe defects than flp-1 alone, producing giant tumor-like cell clusters. XS01C, encoding F-BOX STRESS-INDUCED 4 (FBS4), is preferentially expressed in epidermal stomatal precursor cells. Overexpressing FBS4 rescued the defective stomatal phenotypes of flp-1 xs01c and flp-1 mutants. The deletion or substitution of a conserved residue (Proline166) within the F-box domain of FBS4 abolished or reduced, respectively, its interaction with Arabidopsis Skp1-Like1 (ASK1), the core subunit of the Skp1/Cullin/F-box E3 ubiquitin ligase complex. Furthermore, the FBS4 protein physically interacted with CYCA2;3 and induced its degradation through the ubiquitin-26S proteasome pathway. Thus, in addition to the known transcriptional pathway, the terminal symmetric division in stomatal development is ensured at the post-translational level, such as through the ubiquitination of target proteins recognized by the stomatal lineage F-box protein FBS4.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Regulación de la Expresión Génica de las Plantas/genética , Fenotipo , Estomas de Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Cancer Immunol Immunother ; 70(2): 311-321, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32719950

RESUMEN

B7-H3, an important co-inhibitor, is abnormally highly expressed in a variety of malignancies. The antibodies targeting B7-H3 have exhibited beneficial therapeutic effects in clinical trials. Therefore, discovery of the regulatory factors in B7-H3 expression may provide new strategies for tumor therapy. Here, we investigated the splicing factors involved in the splicing of B7-H3. By individual knockdown of the splicing factors in colorectal cancer (CRC) cells, we found that B7-H3 expression was markedly inhibited by SRSF3 and SRSF8, especially SRSF3. Then we found that both SRSF3 and B7-H3 were highly expressed in CRC tissues. Moreover, high-expression of either SRSF3 or B7-H3 was significantly correlated with poor prognosis of patients. The expression of B7-H3 mRNA and protein were evidently reduced by SRSF3 silence, but were enhanced by overexpression of SRSF3 in both HCT-116 and HCT-8 cells. The results from the RNA immunoprecipitation (RIP) assays demonstrated that SRSF3 protein directly binds to B7-H3 mRNA. In addition, we constructed a minigene recombinant plasmid for expressing B7-H3 exons 3-6. We found that SRSF3 contributed to the retention of B7-H3 exon 4. These findings demonstrate that SRSF3 involves in the splicing of B7-H3 by directly binding to its exon 4 and/or 6. It may provide novel insights into the regulatory mechanisms of B7-H3 expression and potential strategies for the treatment of CRC.


Asunto(s)
Antígenos B7/metabolismo , Neoplasias Colorrectales/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Empalme Alternativo , Antígenos B7/biosíntesis , Antígenos B7/genética , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Exones , Femenino , Células HCT116 , Humanos , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Empalme Serina-Arginina/biosíntesis , Factores de Empalme Serina-Arginina/genética , Transfección
19.
J Transl Med ; 19(1): 42, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33485349

RESUMEN

BACKGROUND: IGHV mutation status is a crucial prognostic biomarker for CLL. In the present study, we investigated the transcriptomic signatures associating with IGHV mutation status and CLL prognosis. METHODS: The co-expression modules and hub genes correlating with IGHV status, were identified using the GSE28654, by 'WGCNA' package and R software (version 4.0.2). The over-representation analysis was performed to reveal enriched cell pathways for genes of correlating modules. Then 9 external cohorts were used to validate the correlation of hub genes expression with IGHV status or clinical features (treatment response, transformation to Richter syndrome, etc.). Moreover, to elucidate the significance of hub genes on disease course and prognosis of CLL patients, the Kaplan-Meier analysis for the OS and TTFT of were performed between subgroups dichotomized by the median expression value of individual hub genes. RESULTS: 2 co-expression modules and 9 hub genes ((FCRL1/FCRL2/HELQ/EGR3LPL/LDOC1/ZNF667/SOWAHC/SEPTIN10) correlating with IGHV status were identified by WGCNA, and validated by external datasets. The modules were found to be enriched in NF-kappaB, HIF-1 and other important pathways, involving cell proliferation and apoptosis. The expression of hub genes was revealed to be significantly different, not only between CLL and normal B cell, but also between various types of lymphoid neoplasms. HELQ expression was found to be related with response of immunochemotherapy treatment significantly (p = 0.0413), while HELQ and ZNF667 were expressed differently between stable CLL and Richter syndrome patients (p < 0.0001 and p = 0.0278, respectively). By survival analysis of subgroups, EGR3 expression was indicated to be significantly associated with TTFT by 2 independent cohorts (GSE39671, p = 0.0311; GSE22762, p = 0.0135). While the expression of HELQ and EGR3 was found to be associated with OS (p = 0.0291 and 0.0114 respectively).The Kras, Hedgehog and IL6-JAK-STAT3 pathways were found to be associating with the expression of hub genes, resulting from GSEA. CONCLUSIONS: The expression of HELQ and EGR3 were correlated with IGHV mutation status in CLL patients. Additionally, the expression of HELQ/EGR3 were prognostic markers for CLL associating with targetable cell signaling pathways.


Asunto(s)
ADN Helicasas/genética , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Leucemia Linfocítica Crónica de Células B , Progresión de la Enfermedad , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Mutación/genética , Proteínas Nucleares , Pronóstico , Análisis de Supervivencia , Proteínas Supresoras de Tumor
20.
J Transl Med ; 19(1): 228, 2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051812

RESUMEN

BACKGROUND: The heterogenous cytogenetic and molecular variations were harbored by AML patients, some of which are related with AML pathogenesis and clinical outcomes. We aimed to uncover the intrinsic expression profiles correlating with prognostic genetic abnormalities by WGCNA. METHODS: We downloaded the clinical and expression dataset from BeatAML, TCGA and GEO database. Using R (version 4.0.2) and 'WGCNA' package, the co-expression modules correlating with the ELN2017 prognostic markers were identified (R2 ≥ 0.4, p < 0.01). ORA detected the enriched pathways for the key co-expression modules. The patients in TCGA cohort were randomly assigned into the training set (50%) and testing set (50%). The LASSO penalized regression analysis was employed to build the prediction model, fitting OS to the expression level of hub genes by 'glmnet' package. Then the testing and 2 independent validation sets (GSE12417 and GSE37642) were used to validate the diagnostic utility and accuracy of the model. RESULTS: A total of 37 gene co-expression modules and 973 hub genes were identified for the BeatAML cohort. We found that 3 modules were significantly correlated with genetic markers (the 'lightyellow' module for NPM1 mutation, the 'saddlebrown' module for RUNX1 mutation, the 'lightgreen' module for TP53 mutation). ORA revealed that the 'lightyellow' module was mainly enriched in DNA-binding transcription factor activity and activation of HOX genes. The 'saddlebrown' module was enriched in immune response process. And the 'lightgreen' module was predominantly enriched in mitosis cell cycle process. The LASSO- regression analysis identified 6 genes (NFKB2, NEK9, HOXA7, APRC5L, FAM30A and LOC105371592) with non-zero coefficients. The risk score generated from the 6-gene model, was associated with ELN2017 risk stratification, relapsed disease, and prior MDS history. The 5-year AUC for the model was 0.822 and 0.824 in the training and testing sets, respectively. Moreover, the diagnostic utility of the model was robust when it was employed in 2 validation sets (5-year AUC 0.743-0.79). CONCLUSIONS: We established the co-expression network signature correlated with the ELN2017 recommended prognostic genetic abnormalities in AML. The 6-gene prediction model for AML survival was developed and validated by multiple datasets.


Asunto(s)
Redes Reguladoras de Genes , Leucemia Mieloide Aguda , Regulación de la Expresión Génica , Marcadores Genéticos , Humanos , Leucemia Mieloide Aguda/genética , Quinasas Relacionadas con NIMA , Nucleofosmina , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA