Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 297(4): 101135, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461091

RESUMEN

Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used MS to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway. Altered inheritance of mitochondria 32 (Aim32), a thioredoxin-like [2Fe-2S] ferredoxin protein, was identified as an Erv1-binding protein. Detailed localization studies showed that Aim32 resided in both the mitochondrial matrix and IMS. Aim32 interacted with additional proteins including redox protein Osm1 and protein import components Tim17, Tim23, and Tim22. Deletion of Aim32 or mutation of conserved cysteine residues that coordinate the Fe-S center in Aim32 resulted in an increased accumulation of proteins with aberrant disulfide linkages. In addition, the steady-state level of assembled TIM22, TIM23, and Oxa1 protein import complexes was decreased. Aim32 also bound to several mitochondrial proteins under nonreducing conditions, suggesting a function in maintaining the redox status of proteins by potentially targeting cysteine residues that may be sensitive to oxidation. Finally, Aim32 was essential for growth in conditions of stress such as elevated temperature and hydroxyurea, and under anaerobic conditions. These studies suggest that the Fe-S protein Aim32 has a potential role in general redox homeostasis in the matrix and IMS. Thus, Aim32 may be poised as a sensor or regulator in quality control for a broad range of mitochondrial proteins.


Asunto(s)
Ferredoxinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Ferredoxinas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Am J Physiol Endocrinol Metab ; 310(7): E572-85, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26758684

RESUMEN

Glucocorticoids and FoxO3 exert similar metabolic effects in skeletal muscle. FoxO3 gene expression was increased by dexamethasone (Dex), a synthetic glucocorticoid, both in vitro and in vivo. In C2C12 myotubes the increased expression is due to, at least in part, the elevated rate of FoxO3 gene transcription. In the mouse FoxO3 gene, we identified three glucocorticoid receptor (GR) binding regions (GBRs): one being upstream of the transcription start site, -17kbGBR; and two in introns, +45kbGBR and +71kbGBR. Together, these three GBRs contain four 15-bp glucocorticoid response elements (GREs). Micrococcal nuclease (MNase) assay revealed that Dex treatment increased the sensitivity to MNase in the GRE of +45kbGBR and +71kbGBR upon 30- and 60-min Dex treatment, respectively. Conversely, Dex treatment did not affect the chromatin structure near the -17kbGBR, in which the GRE is located in the linker region. Dex treatment also increased histone H3 and/or H4 acetylation in genomic regions near all three GBRs. Moreover, using chromatin conformation capture (3C) assay, we showed that Dex treatment increased the interaction between the -17kbGBR and two genomic regions: one located around +500 bp and the other around +73 kb. Finally, the transcriptional coregulator p300 was recruited to all three GBRs upon Dex treatment. The reduction of p300 expression decreased FoxO3 gene expression and Dex-stimulated interaction between distinct genomic regions of FoxO3 gene identified by 3C. Overall, our results demonstrate that glucocorticoids activated FoxO3 gene transcription through multiple GREs by chromatin structural change and DNA looping.


Asunto(s)
Dexametasona/farmacología , Factores de Transcripción Forkhead/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Código de Histonas/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Receptores de Glucocorticoides , Elementos de Respuesta , Transcripción Genética
3.
Diabetes ; 66(6): 1601-1610, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28292967

RESUMEN

Glucocorticoids promote lipolysis in white adipose tissue (WAT) to adapt to energy demands under stress, whereas superfluous lipolysis causes metabolic disorders, including dyslipidemia and hepatic steatosis. Glucocorticoid-induced lipolysis requires the phosphorylation of cytosolic hormone-sensitive lipase (HSL) and perilipin 1 (Plin1) in the lipid droplet by protein kinase A (PKA). We previously identified Pik3r1 (also called p85α) as a glucocorticoid receptor target gene. Here, we found that glucocorticoids increased HSL phosphorylation, but not Plin1 phosphorylation, in adipose tissue-specific Pik3r1-null (AKO) mice. Furthermore, in lipid droplets, the phosphorylation of HSL and Plin1 and the levels of catalytic and regulatory subunits of PKA were increased by glucocorticoids in wild-type mice. However, these effects were attenuated in AKO mice. In agreement with reduced WAT lipolysis, glucocorticoid- initiated hepatic steatosis and hypertriglyceridemia were improved in AKO mice. Our data demonstrated a novel role of Pik3r1 that was independent of the regulatory function of phosphoinositide 3-kinase in mediating the metabolic action of glucocorticoids. Thus, the inhibition of Pik3r1 in adipocytes could alleviate lipid disorders caused by excess glucocorticoid exposure.


Asunto(s)
Adipocitos/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Gotas Lipídicas/metabolismo , Lipólisis , Perilipina-1/metabolismo , Adipocitos/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Western Blotting , Dexametasona/farmacología , Ácidos Grasos no Esterificados/metabolismo , Técnicas de Silenciamiento del Gen , Glucocorticoides/farmacología , Insulina/metabolismo , Gotas Lipídicas/efectos de los fármacos , Ratones , Perilipina-1/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Esterol Esterasa/efectos de los fármacos , Esterol Esterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA