RESUMEN
We have identified an orphan G protein-coupled receptor, SP174, that shares a high degree of homology with the recently described ADP receptor P2Y(12). mRNA for SP174 is abundant in the brain and in cells of the immune system. In the present study, we demonstrate that SP174 is also a receptor for ADP, which is coupled to Galphai. ADP potently stimulates SP174 with an EC(50) of 60 nM, and other related nucleotides are active as well, with a rank order of potency 2-methylthio-ADP tetrasodium = adenosine 5'-O-2-(thio)diphosphate = 2-methylthio-ATP tetrasodium > ADP > AP3A >ATP > IDP. This pharmacological profile is similar to that for P2Y(12). We have also identified the murine homolog of SP174, which exhibits 75% homology to the human receptor. ADP is also a potent agonist at the murine receptor, and its pharmacological profile is similar to its human counterpart, but ADP and related nucleotides are more potent at the murine receptor than the human receptor. In keeping with the general nomenclature for the purinergic receptors, we propose designating this novel receptor P2Y(13).
Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de la Membrana , Receptores Purinérgicos P2/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Clonación Molecular , Perfilación de la Expresión Génica , Humanos , Ligandos , Ratones , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/biosíntesis , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y12 , Homología de Secuencia de AminoácidoRESUMEN
Orphan G-protein-coupled receptors are a large class of receptors whose cognate ligands are unknown. SP9155 (also referred to as AQ27 and GPR103) is an orphan G-protein-coupled receptor originally cloned from a human brain cDNA library. SP9155 was found to be predominantly expressed in brain, heart, kidney, retina, and testis. Phylogenetic analysis shows that SP9155 shares high homology with Orexin, NPFF, and cholecystokinin (CCK) receptors, but identification of the endogenous ligand for SP9155 has not been reported. In this study, we have used a novel method to predict peptides from genome data bases. From these predicted peptides, a novel RF-amide peptide, P52 was shown to selectively activate SP9155-transfected cells. We subsequently cloned the precursor gene of the P52 ligand and characterized the activity of other possible peptides encoded by the precursor. This revealed an extended peptide, P518, which exhibited high affinity for SP9155 (EC50 = 7 nm). mRNA expression analysis revealed that the peptide P518 precursor gene is predominantly expressed in various brain regions, coronary arteries, thyroid and parathyroid glands, large intestine, colon, bladder, testes, and prostate. These results indicate the existence of a novel RF-amide neuroendocrine peptide system, and suggest that SP9155 is likely the relevant G-protein-coupled receptor for this peptide.