RESUMEN
The choice of using one of many possible neurotransmitter systems is a critical step in defining the identity of an individual neuron type. We show here that the key defining feature of glutamatergic neurons, the vesicular glutamate transporter EAT-4/VGLUT, is expressed in 38 of the 118 anatomically defined neuron classes of the C. elegans nervous system. We show that distinct cis-regulatory modules drive expression of eat-4/VGLUT in distinct glutamatergic neuron classes. We identify 13 different transcription factors, 11 of them homeodomain proteins, that act in distinct combinations in 25 different glutamatergic neuron classes to initiate and maintain eat-4/VGLUT expression. We show that the adoption of a glutamatergic phenotype is linked to the adoption of other terminal identity features of a neuron, including cotransmitter phenotypes. Examination of mouse orthologs of these homeodomain proteins resulted in the identification of mouse LHX1 as a regulator of glutamatergic neurons in the brainstem.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Proteínas de Homeodominio/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptores de Glutamato/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Ratones , Neuronas/clasificación , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular de GlutamatoRESUMEN
BACKGROUND: Osteosarcoma (OS) is one of the most common aggressive bone malignancy tumors in adolescents. With the application of new chemotherapy regimens, finding new and effective anti-OS drugs to coordinate program implementation is urgent for the patients of OS. Oridonin had been proved to mediate anti-tumor effect on OS cells, but its mechanism has not been fully elucidated. METHODS: The effects of oridonin on the viability, clonal formation and migration of 143B and U2OS cells were detected by CCK-8, colony formation assays and wound-healing test. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore the mechanism of oridonin on OS. Western blot (WB), real-time quantitative PCR (qRT-PCR) were used to detect the expression levels of apoptosis and ferroptosis-relative proteins and genes. Annexin V-FITC apoptosis detection kit and flow cytometry examination were used to detect the level of apoptosis. Iron assay kit was used to evaluate the relative Fe2+ content. The levels of mitochondrial membrane potential and lipid peroxidation production was determined by mitochondrial membrane potential detection kit and ROS assay kit. RESULTS: Oridonin could effectively inhibit the survival, clonal formation and metastasis of OS cells. The KEGG results indicated that oridonin is associated with the malignant phenotypic signaling pathways of proliferation, migration, and drug resistance in OS. Oridonin was capable of inhibiting expressions of BAX, cl-caspase3, SLC7A11, GPX4 and FTH1 proteins and mRNA, while promoting the expressions of Bcl-2 and ACSL4 in 143B and U2OS cells. Additionally, we found that oridonin could promote the accumulation of reactive oxygen species (ROS) and Fe2+ in OS cells, as well as reduce mitochondrial membrane potential, and these effects could be significantly reversed by the ferroptosis inhibitor ferrostatin-1 (Fer-1). CONCLUSION: Oridonin can trigger apoptosis and ferroptosis collaboratively in OS cells, making it a promising and effective agent for OS therapy.
Asunto(s)
Diterpenos de Tipo Kaurano , Ferroptosis , Osteosarcoma , Humanos , Adolescente , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular , Apoptosis , Osteosarcoma/patología , Línea Celular TumoralRESUMEN
BACKGROUND: Symptomatic intracranial atherosclerotic stenosis (ICAS) is a major cause of ischemic stroke worldwide. In patients undergoing endovascular treatment for ICAS, in-stent restenosis (ISR) is associated with ischemic stroke recurrence. OBJECTIVE: Intracranial drug-eluting self-expanding stent systems (COMETIU; Sinomed Neurovita Technology Inc., CHN) are new devices for treating ICAS. This study evaluated the perioperative experience and medium-term outcomes of COMETIU in 16 patients. METHODS: We prospectively analyzed 16 patients with ICAS (≥ 70% stenosis) who underwent intravascular therapy between September 4, 2022, and February 1, 2023. The primary outcome was the incidence of ISR at 6 months postoperatively. The secondary efficacy outcomes were device and technical success rates. The secondary safety outcomes included stroke or death within 30 days after the procedure and the cumulative annual rate of recurrent ischemic stroke in the target-vessel territory from 31 days to 6 months and 1 year. RESULTS: A total of 16 patients with 16 intracranial atherosclerotic lesions were treated with 16 COMETIUs. All procedures were performed under general anesthesia with 100% device and technical success rates, with no cases of periprocedural stroke or death. The mean radiographic follow-up duration was at least 6 months postoperatively, and all patients presented for radiographic and clinical follow-up. There were no reported ischemic or hemorrhagic strokes. Angiographic follow-up for all patients revealed no cases of ISR. CONCLUSION: COMETIU is safe and effective for treating ICAS, with minimal risk during the procedure and a low rate of ISR during medium-term follow-up.
RESUMEN
BACKGROUND: Patients with symptomatic chronic internal carotid artery occlusion (ICAO) face a high risk of recurrent stroke despite receiving aggressive medical therapy. This study aimed to evaluate the effectiveness and safety of hybrid surgery in treating symptomatic chronic ICAO. METHODS: This retrospective case series was conducted at a single center. From January 2019 to December 2022, patients with symptomatic chronic ICAO who underwent hybrid surgery were included. We collected baseline data, lesion characteristics, revascularization rates, perioperative complications, and follow-up outcomes. RESULTS: The study enrolled 27 patients, comprising 22 males and 5 females, with symptomatic chronic ICAO. The hybrid surgery achieved a technical success rate of 100% for revascularization (n = 27), with a perioperative complication rate of 14.8% (n = 4). Following a median follow-up of 6.0 months (IQR, 4-10), 21 patients underwent a DSA or CT angiography reexamination, confirming a vascular patency rate of 90.5% (n = 19). One patient required surgery for severe in-stent restenosis, and another experienced asymptomatic occlusion. Clinical follow-ups were conducted for all 26 patients; no new strokes were reported in the qualifying artery territory, with 13 patients scoring 0, 12 scoring 1, and 1 scoring 2 on the mRS. CONCLUSION: Although hybrid surgery represent a promising option for treating chronic ICAO, they are also associated with a relatively high incidence of treatment-related complications. The application of composite surgery should be based on standardized technical guidelines and the careful selection of patients who are genuinely at high risk for recurrent strokes.
Asunto(s)
Arteria Carótida Interna , Estenosis Carotídea , Humanos , Masculino , Femenino , Estenosis Carotídea/cirugía , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Arteria Carótida Interna/cirugía , Resultado del Tratamiento , Enfermedad Crónica , Endarterectomía Carotidea/métodos , Accidente Cerebrovascular/cirugía , Accidente Cerebrovascular/etiologíaRESUMEN
Membrane trafficking pathways mediate key microglial activities such as cell migration, cytokine secretion, and phagocytosis. However, the underlying molecular mechanism remains poorly understood. Previously, we found that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt associated with Parkinson's disease (PD) and schizophrenia, inhibits cytokine release and phagocytosis in primary microglia. Here we reported the in vivo function of Syt11 in microglial immune responses using an inducible microglia-specific Syt11-conditional-knockout (cKO) mouse strain. Syt11-cKO resulted in activation of microglia and elevated mRNA levels of IL-6, TNF-α, IL-1ß, and iNOS in various brain regions under both resting state and LPS-induced acute inflammation state in adult mice. In a PD mouse model generated by microinjection of preformed α-synuclein fibrils into the striatum, a reduced number of microglia migrated toward the injection sites and an enhanced phagocytosis of α-synuclein fibrils by microglia were found in Syt11-cKO mice. To understand the molecular mechanism of Syt11 function, we identified its direct binding proteins vps10p-tail-interactor-1a (vti1a) and vti1b. The linker domain of Syt11 interacted with both proteins and a peptide derived from it competitively inhibited the interaction of Syt11 with vti1a/vti1b in vitro and in cells. Importantly, application of this peptide induced more cytokine secretion in wild-type microglia upon LPS treatment, phenocopying defects in Syt11 knockdown cells. Altogether, we propose that Syt11 inhibits microglial activation in vivo and regulates cytokine secretion through interactions with vti1a and vti1b.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/metabolismo , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Fagocitosis , Sinaptotagminas/genéticaRESUMEN
Aqueous Zn-Mn battery has been considered as the most promising scalable energy-storage system due to its intrinsic safety and especially ultralow cost. However, the traditional Zn-Mn battery mainly using manganese oxides as cathode shows low voltage and suffers from dissolution/disproportionation of the cathode during cycling. Herein, for the first time, a high-voltage and long-cycle Zn-Mn battery based on a highly reversible organic coordination manganese complex cathode (Manganese polyacrylate, PAL-Mn) was constructed. Benefiting from the insoluble carboxylate ligand of PAL-Mn that can suppress shuttle effect and disproportionationation reaction of Mn3+ in a mild electrolyte, Mn3+ /Mn2+ reaction in coordination state is realized, which not only offers a high discharge voltage of 1.67â V but also exhibits excellent cyclability (100 % capacity retention, after 4000 cycles). High voltage reaction endows the Zn-Mn battery high specific energy (600â Wh kg-1 at 0.2â A g-1 ), indicating a bright application prospect. The strategy of introducing carboxylate ligands in Zn-Mn battery to harness high-voltage reaction of Mn3+ /Mn2+ well broadens the research of high-voltage Zn-Mn batteries under mild electrolyte conditions.
RESUMEN
Recent work has revealed that spontaneous release plays critical roles in the central nervous system, but how it is regulated remains elusive. Here, we report that synaptotagmin-11 (Syt11), a Ca2+ -independent Syt isoform associated with schizophrenia and Parkinson's disease, suppressed spontaneous release. Syt11-knockout hippocampal neurons showed an increased frequency of miniature excitatory post-synaptic currents while over-expression of Syt11 inversely decreased the frequency. Neither knockout nor over-expression of Syt11 affected the average amplitude, suggesting the pre-synaptic regulation of spontaneous neurotransmission by Syt11. Glutathione S-transferase pull-down, co-immunoprecipitation, and affinity-purification experiments demonstrated a direct interaction of Syt11 with vps10p-tail-interactor-1a (vti1a), a non-canonical SNARE protein that maintains spontaneous release. Importantly, knockdown of vti1a reversed the phenotype of Syt11 knockout, identifying vti1a as the main target of Syt11 inhibition. Domain analysis revealed that the C2A domain of Syt11 bound vti1a with high affinity. Consistently, expression of the C2A domain alone rescued the phenotype of elevated spontaneous release in Syt11-knockout neurons similar to the full-length protein. Altogether, our results suggest that Syt11 inhibits vti1a-containing vesicles during spontaneous release.
Asunto(s)
Proteínas Qb-SNARE/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Sinaptotagminas/farmacología , Animales , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores , Técnicas de Sustitución del Gen , Hipocampo/patología , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/patología , Cultivo Primario de CélulasRESUMEN
Cytokine secretion and phagocytosis are key functions of activated microglia. However, the molecular mechanisms underlying their regulation in microglia remain largely unknown. Here, we report that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt implicated in Parkinson disease and schizophrenia, inhibits cytokine secretion and phagocytosis in microglia. We found Syt11 expression in microglia in brain slices and primary microglia. Interestingly, Syt11-knockdown (KD) increased cytokine secretion and NO release in primary microglia both in the absence and presence of lipopolysaccharide. NF-κB was activated in untreated KD microglia together with enhanced synthesis of IL-6, TNF-α, IL-1ß, and iNOS. When the release capacity was assessed by the ratio of extracellular to intracellular levels, only the IL-6 and TNF-α secretion capacity was increased in Syt11-KD cells, suggesting that Syt11 specifically regulates conventional secretion. Consistently, Syt11 localized to the trans-Golgi network and recycling endosomes. In addition, Syt11 was recruited to phagosomes and its deficiency enhanced microglial phagocytosis. All the KD phenotypes were rescued by expression of an shRNA-resistant Syt11, while overexpression of Syt11 suppressed cytokine secretion and phagocytosis. Importantly, Syt11 also inhibited microglial phagocytosis of α-synuclein fibrils, supporting its association with Parkinson disease. Taken together, we propose that Syt11 suppresses microglial activation under both physiological and pathological conditions through the inhibition of cytokine secretion and phagocytosis.
Asunto(s)
Citocinas/metabolismo , Regulación de la Expresión Génica/genética , Microglía/efectos de los fármacos , Microglía/metabolismo , Fagocitosis/efectos de los fármacos , Sinaptotagminas/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transfección , alfa-Sinucleína/metabolismoRESUMEN
Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Homeodominio/genética , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/genética , Factores del Dominio POU/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular/genética , Neuronas Colinérgicas/citología , Neuronas Colinérgicas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Proteínas de Homeodominio/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Neurogénesis/genética , Neuronas/clasificación , Neuropéptidos/metabolismo , Factores del Dominio POU/metabolismo , Neuronas Serotoninérgicas/citología , Neuronas Serotoninérgicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Infants and young children are disproportionately susceptible to severe complications from respiratory viruses, although the underlying mechanisms remain unknown. Recent studies show that the T cell response in the lung is important for protective responses to respiratory infections, although details on the infant/pediatric respiratory immune response remain sparse. The objectives of the present study were to characterize the local versus systemic immune response in infants and young children with respiratory failure from viral respiratory tract infections and its association to disease severity. Daily airway secretions were sampled from infants and children 4 years of age and younger receiving mechanical ventilation owing to respiratory failure from viral infection or noninfectious causes. Samples were examined for immune cell composition and markers of T cell activation. These parameters were then correlated with clinical disease severity. Innate immune cells and total CD3(+) T cells were present in similar proportions in airway aspirates derived from infected and uninfected groups; however, the CD8:CD4 T cell ratio was markedly increased in the airways of patients with viral infection compared with uninfected patients, and specifically in infected infants with acute lung injury. T cells in the airways were phenotypically and functionally distinct from those in blood with activated/memory phenotypes and increased cytotoxic capacity. We identified a significant increase in airway cytotoxic CD8(+) T cells in infants with lung injury from viral respiratory tract infection that was distinct from the T cell profile in circulation and associated with increasing disease severity. Airway sampling could therefore be diagnostically informative for assessing immune responses and lung damage.
Asunto(s)
Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/virología , Linfocitos T CD8-positivos/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/patología , Factores de Edad , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Demografía , Femenino , Humanos , Inmunofenotipificación , Lactante , Interleucina-6/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Recuento de Linfocitos , Subgrupos Linfocitarios/inmunología , Masculino , Modelos Estadísticos , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/patologíaRESUMEN
Percutaneous needle insertion is a minimally invasive surgery with broad medical application prospects, such as biopsy and brachytherapy. However, the currently adopted rigid needles have limitations, as they cannot bypass obstacles or correct puncture deviations and can only travel along a straight path. Bevel-tip flexible needles are increasingly being adopted to address these issues, owing to their needle body's ease of deformation and bending. Successful puncture of flexible needles relies on accurate models and path planning, ensuring the needle reaches the target while avoiding vital tissues. This review investigates puncture models and path-planning algorithms by reviewing recent literature, focusing on the path-planning part. According to the literature, puncture models can be divided into three types: mechanical, finite element method (FEM), and kinematic models, while path-planning algorithms are categorized and discussed following the division used for mobile robots, which differs from the conventional approach for flexible needles-an innovation in this review. This review systematically summarizes the following categories: graph theory search, sampling-based, intelligent search, local obstacle avoidance, and other algorithms, including their implementation, advantages, and disadvantages, to further explore the potential to overcome obstacles in path planning for minimally invasive puncture needles. Finally, this study proposes future development trends in path-planning algorithms, providing possible directions for subsequent research for bevel-tipped flexible needles. This research aims to provide a resource for researchers to quickly learn about common path-planning algorithms, their backgrounds, and puncture models.
RESUMEN
Serious solvation effect of zinc ions has been considered as the cause of the severe side reactions (hydrogen evolution, passivation, dendrites, and etc.) of aqueous zinc metal batteries. Even though the regulation of cationic solvation structure has been widely studied, effects of the anionic solvation structures on the zinc metal were rarely examined. Herein, co-reconstruction of anionic and cationic solvation structures was realized through constructing a new multi-component electrolyte (Zn(BF4)2-glycerol-boric acid-chitosan-polyacrylamide, simplified as ZGBCP), which incorporates double crosslinking network via the esterification, protonation and polymerization reactions, thereby combining multiple advantages of 'liquid-like' high conductivity, 'gel-like' robust interface, and 'solid-like' high Zn2+ transfer number. Based on the ZGBCP electrolyte, the Zn anodes achieve record-low polarization and stable cycling. Furthermore, the ZGBCP electrolyte renders the AZMBs ultrawide working temperature (-50 °C ~ +100 °C) and ultralong cycle life (30000 cycles), which further validates the feasibility of the dual solvation structure strategy and provides a innovative perspective for the development of high-performance AZMBs.
RESUMEN
The purpose of this study was to explore and verify genes that regulate the reproductive traits of Tibetan pigs at the mRNA level. The ovarian tissues of Tibetan pigs (TPs) and Yorkshire pigs (YPs) were selected as research objects, and cDNA libraries of the ovarian tissue transcripts of Tibetan pigs and Yorkshire pigs were successfully constructed by the RNA-Seq technique. A total of 651 differentially expressed genes (DEGs) were screened, including 414 up-regulated genes and 237 down-regulated genes. Through GO and KEGG enrichment analysis, it was found that these differentially expressed genes were significantly enriched in cell process, reproductive process, reproduction, cell proliferation, binding, and catalytic activity, as well as oxidative phosphorylation, endocrine resistance, thyroid hormone, Notch, and other signal transduction pathways. Genes significantly enriched in pathways closely related to reproductive regulation were analyzed and selected, and the AR, CYP11A1, CYP17A1, INHBA, ARRB2, EGFR, ETS1, HSD17B1, IGF1R, MIF, SCARB1, and SMAD4 genes were identified as important candidate genes. Twelve differentially expressed genes related to reproduction were verified by RT-qPCR. The results showed that the expression of the AR, CYP17A1, EGFR, ETS1, IGF1R, and SMAD4 genes was significantly higher in Tibetan pigs than in Yorkshire pigs, while the expression of the CYP11A1, INHBA, ARRB2, HSD17B, MIF, and SCARB1 genes in Tibetan pigs was significantly lower than in Yorkshire pigs. The purpose of this study is to provide a theoretical basis for exploring the molecular mechanism of reproductive trait effect genes and the application of molecular breeding in Tibetan pigs.
RESUMEN
The repair of bone tissue damage is a complex process that is well-orchestrated in time and space, a focus and difficulty in orthopedic treatment. In recent years, the success of mesenchymal stem cells (MSCs)-mediated bone repair in clinical trials of large-area bone defects and bone necrosis has made it a candidate in bone tissue repair engineering and regenerative medicine. MSCs are closely related to macrophages. On one hand, MSCs regulate the immune regulatory function by influencing macrophages proliferation, infiltration, and phenotype polarization, while also affecting the osteoclasts differentiation of macrophages. On the other hand, macrophages activate MSCs and mediate the multilineage differentiation of MSCs by regulating the immune microenvironment. The cross-talk between MSCs and macrophages plays a crucial role in regulating the immune system and in promoting tissue regeneration. Making full use of the relationship between MSCs and macrophages will enhance the efficacy of MSCs therapy in bone tissue repair, and will also provide a reference for further application of MSCs in other diseases.
RESUMEN
OBJECTIVE: To analyze the complications and long-term follow-up results of endovascular treatment for ruptured intracranial posterior circulation aneurysms and identify outcome predictors. METHODS: A total of 194 patients with ruptured intracranial posterior circulation aneurysms treated at our center between January 2014 and June 2023 were included in this retrospective analysis. Factors influencing complications during hospitalization and clinical and angiographic outcomes were analyzed. RESULTS: Complications occurred in 57 patients (29.4%) during hospitalization. The median clinical follow-up time was 46.5 (interquartile range 26.0-65.3) months, with favorable outcomes observed in 81.4% (158/194) and unfavorable outcomes in 18.5% (36/194) of cases, resulting in an overall mortality rate of 11.9% (23/194). The overall 1-year and 5-year complication-free survival rates were 76.4% and 70.7%, respectively. The overall 1-year and 5-year overall survival rates were 89.5% and 85.4%, respectively. Multifactorial analysis revealed that involvement of the basilar artery (P = 0.032) and perioperative external ventricular drainage (P < 0.001) were independent risk factors for complications during hospitalization, while advanced age (P = 0.030), poor World Federation of Neurosurgical Societies grade (P = 0.003), and use of closed cell design laser cut stents (P = 0.041) were independent risk factors for unfavorable outcomes during follow-up. Among the survivors, angiography follow-up was available for 139 patients, with a follow-up rate of 81.3% (139/171) and a median follow-up time of 8 months (interquartile range 6-12). During this period, 9 patients experienced aneurysm recanalization, and the complete occlusion rate was 85.6% (119/139). CONCLUSION: Endovascular treatment is feasible and effective for treating ruptured intracranial aneurysms; however, there are still risks of complications and unfavorable clinical outcomes. The involvement of the basilar artery trunk increases the risk of complications, and the use of closed cell design laser cut stents is associated with unfavorable outcomes. Clinicians should be cautious to avoid the risk factors when treating ruptured posterior circulation aneurysms and strive to minimize the occurrence of complications and unfavorable clinical outcomes.
RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant neoplasm characterized by a poor prognosis and limited therapeutic strategy. The PDAC tumor microenvironment presents a complex heterogeneity, where neutrophils emerge as the predominant constituents of the innate immune cell population. Leveraging the power of single-cell RNA-seq, spatial RNA-seq, and multi-omics approaches, we included both published datasets and our in-house patient cohorts, elucidating the inherent heterogeneity in the formation of neutrophil extracellular traps (NETs) and revealed the correlation between NETs and immune suppression. Meanwhile, we constructed a multi-omics prognostic model that suggested the patients exhibiting downregulated expression of NETs may have an unfavorable outcome. We also confirmed TLR2 as a potent prognosis factor and patients with low TLR2 expression had more effective T cells and an overall survival extension for 6 months. Targeting TLR2 might be a promising strategy to reverse immunosuppression and control tumor progression for an improved prognosis.
RESUMEN
Metastatic clear cell renal cell carcinoma has heterogenous tumor microenvironment (TME). Among the metastatic lesions, pancreas metastasis is rare and controversy in treatment approaches. Here, extensive primary and metastatic lesion samples were included by single-cell RNA-seq to decipher the distinct metastasis TME. The hypoxic and inflammatory TME of pancreas metastasis was decoded in this study, and the activation of PAX8-myc signaling, and metabolic reprogramming were observed. The active components including endothelial cells, fibroblasts and T cells were profiled. Meanwhile, we also evaluated the effect of anti-angiogenesis treatment in the pancreas metastasis patient. The potential mechanisms of pancreatic tropism, instability of genome, and the response of immunotherapy were also discussed in this work. Taken together, our findings suggest a clue to the heterogeneity in metastasis TME and provide evidence for the treatment of pancreas metastasis in renal cell carcinoma patients.
Asunto(s)
Inhibidores de la Angiogénesis , Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Pancreáticas , RNA-Seq , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/secundario , Carcinoma de Células Renales/patología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Análisis de la Célula Individual/métodos , Factor de Transcripción PAX8/genética , Factor de Transcripción PAX8/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino , Análisis de Expresión Génica de una Sola CélulaRESUMEN
The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.
Asunto(s)
Diferenciación Celular , Proteínas de Homeodominio , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/citología , Femenino , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Embarazo , Placenta/metabolismo , Placenta/citología , Linaje de la Célula , Placentación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Madre/metabolismo , Células Madre/citología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citologíaRESUMEN
Medical text classification, as a fundamental medical natural language processing task, aims to identify the categories to which a short medical text belongs. Current research has focused on performing the medical text classification task using a pre-training language model through fine-tuning. However, this paradigm introduces additional parameters when training extra classifiers. Recent studies have shown that the "prompt-tuning" paradigm induces better performance in many natural language processing tasks because it bridges the gap between pre-training goals and downstream tasks. The main idea of prompt-tuning is to transform binary or multi-classification tasks into mask prediction tasks by fully exploiting the features learned by pre-training language models. This study explores, for the first time, how to classify medical texts using a discriminative pre-training language model called ERNIE-Health through prompt-tuning. Specifically, we attempt to perform prompt-tuning based on the multi-token selection task, which is a pre-training task of ERNIE-Health. The raw text is wrapped into a new sequence with a template in which the category label is replaced by a [UNK] token. The model is then trained to calculate the probability distribution of the candidate categories. Our method is tested on the KUAKE-Question Intention Classification and CHiP-Clinical Trial Criterion datasets and obtains the accuracy values of 0.866 and 0.861. In addition, the loss values of our model decrease faster throughout the training period compared to the fine-tuning. The experimental results provide valuable insights to the community and suggest that prompt-tuning can be a promising approach to improve the performance of pre-training models in domain-specific tasks.
RESUMEN
The emerging electromagnetic radiation and interference problems have promoted the rapid development of microwave absorption materials (MAMs). However, it remains a severe challenge to construct high-performance microwave absorption materials with broadband, lightweight and corrosion resistance within low filling contents. Herein, hierarchical dandelion-like CoS2 hollow microspheres were reasonably constructed via a solvothermal-hydrothermal etching-in situ vulcanization process. The structure morphology, composition and electromagnetic performance of all samples have been thoroughly tested. The research results demonstrated that the structure morphology of the prepared samples with a volume ratio of 1 : 1 between ethanol and H2O remained intact without serious damage. Notably, the as-obtained hierarchical dandelion-like CoS2 hollow microspheres (25 wt%) exhibited excellent microwave absorption capacity with a minimum reflection loss (RLmin) of -47.3 dB and the corresponding effective absorption bandwidth (EAB) of 8.4 GHz at 3.3 mm. Moreover, the broadest effective absorption bandwidth (EAB, RL < -10 dB) reached 9.0 GHz (9.0-18.0 GHz) at the matching thickness of 3.2 mm. The unparalleled multiple features including hierarchical hollow structure, tunable complex permittivity as well as the enhanced impedance matching endowed CoS2 great promise as high-performance microwave absorbers for solving the problem of electromagnetic pollution.