Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2317702121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446850

RESUMEN

The electro-Fenton process is a state-of-the-art water treatment technology used to remove organic contaminants. However, the low O2 utilization efficiency (OUE, <1%) and high energy consumption remain the biggest obstacles to practical application. Here, we propose a local O2 concentrating (LOC) approach to increase the OUE by over 11-fold compared to the conventional simple O2 diffusion route. Due to the well-designed molecular structure, the LOC approach enables direct extraction of O2 from the bulk solution to the reaction interface; this eliminates the need to pump O2/air to overcome the sluggish O2 mass transfer and results in high Faradaic efficiencies (~50%) even under natural air diffusion conditions. Long-term operation of a flow-through pilot device indicated that the LOC approach saved more than 65% of the electric energy normally consumed in treating actual industrial wastewater, demonstrating the great potential of this system-level design to boost the electro-Fenton process for energy-efficient water remediation.

2.
Proc Natl Acad Sci U S A ; 120(3): e2209979120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626554

RESUMEN

The electrolysis of nitrate reduction to ammonia (NRA) is promising for obtaining value-added chemicals and mitigating environmental concerns. Recently, catalysts with high-performance ammonia synthesis from nitrate has been achieved under alkaline or acidic conditions. However, NRA in neutral solution still suffers from the low yield rate and selectivity of ammonia due to the low binding affinity and nucleophilicity of NO3-. Here, we confirmed that the in-situ-generated Fe(II) ions existed as specifically adsorbed cations in the inner Helmholtz plane (IHP) with a low redox potential. Inspired by this, a strategy (Fe-IHP strategy) was proposed to enhance NRA activity by tuning the affinity of the electrode-electrolyte interface. The specifically adsorbed Fe(II) ions [SA-Fe(II)] greatly alleviated the electrostatic repulsion around the interfaceresulting in a 10-fold lower in the adsorption-free energy of NO3- when compared to the case without SA-Fe(II). Meanwhile, the modulated interface accelerated the kinetic mass transfer process by 25 folds compared to the control. Under neutral conditions, a Faraday efficiency of 99.6%, a selectivity of 99%, and an extremely high NH3 yield rate of 485.8 mmol h-1 g-1 FeOOH were achieved. Theoretical calculations and in-situ Raman spectroscopy confirmed the electron-rich state of the SA-Fe(II) donated to p orbitals of N atom and favored the hydrogenation of *NO to *NOH for promoting the formation of high-selectivity ammonia. In sum, these findings complement the textbook on the specific adsorption of cations and provide insights into the design of low-cost NRA catalysts with efficient ammonia synthesis.


Asunto(s)
Amoníaco , Nitratos , Electrólitos , Adsorción , Hierro , Compuestos Ferrosos
3.
Proc Natl Acad Sci U S A ; 120(34): e2305604120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585465

RESUMEN

Electrochemical conversion of N2 into ammonia presents a sustainable pathway to produce hydrogen storage carrier but yet requires further advancement in electrocatalyst design and electrolyzer integration. This technology suffers from low selectivity and yield owing to the extremely strong N≡N bond and the exceptionally low solubility of N2 in aqueous systems. A high NH3 synthesis performance is restricted by the high activation energy of N≡N bond and the supply insufficiency of N2 to active sites. This paper describes the introduction of electron-rich Bi0 sites into Ag catalysts with a high-pressure electrolyzer that enables a dramatically enhanced Faradaic efficiency of 44.0% and yield of 28.43 µg cm-2 h-1 at 4.0 MPa. Combined with density functional theory results, in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy demonstrates that N2 reduction reaction follows an associative mechanism, in which a high coverage of N-N bond and -NH2 intermediates suggest electron-rich Bi0 boosts sound activation of N2 molecules and low hydrogenation barrier. The proposed strategy of engineering electrochemical catalysts and devices provides powerful guidelines for achieving industrial-level green ammonia production.

4.
Nature ; 569(7757): 509-513, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068699

RESUMEN

A universal gain-of-function approach for selective and temporal control of protein activity in living systems is crucial to understanding dynamic cellular processes. Here we report development of a computationally aided and genetically encoded proximal decaging (hereafter, CAGE-prox) strategy that enables time-resolved activation of a broad range of proteins in living cells and mice. Temporal blockage of protein activity was computationally designed and realized by genetic incorporation of a photo-caged amino acid in proximity to the functional site of the protein, which can be rapidly removed upon decaging, resulting in protein re-activation. We demonstrate the wide applicability of our method on diverse protein families, which enabled orthogonal tuning of cell signalling and immune responses, temporal profiling of proteolytic substrates upon caspase activation as well as the development of protein-based pro-drug therapy. We envision that CAGE-prox will open opportunities for the gain-of-function study of proteins and dynamic biological processes with high precision and temporal resolution.


Asunto(s)
Supervivencia Celular , Proteínas/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular , Activación Enzimática , Mutación con Ganancia de Función , Humanos , Masculino , Ratones , Neoplasias/tratamiento farmacológico , Fosfotransferasas/metabolismo , Profármacos/metabolismo , Profármacos/uso terapéutico , Proteínas/genética , Proteínas/inmunología , Proteínas/uso terapéutico , Proteolisis , Proteómica , Transducción de Señal , Factores de Tiempo
5.
Nano Lett ; 24(26): 7919-7926, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38836594

RESUMEN

Schottky diode, capable of ultrahigh frequency operation, plays a critical role in modern communication systems. To develop cost-effective and widely applicable high-speed diodes, researchers have delved into thin-film semiconductors. However, a performance gap persists between thin-film diodes and conventional bulk semiconductor-based ones. Featuring high mobility and low permittivity, indium-tin-oxide has emerged to bridge this gap. Nevertheless, due to its high carrier concentration, indium-tin-oxide has predominantly been utilized as electrode rather than semiconductor. In this study, a remarkable quantum confinement induced dedoping phenomenon was discovered during the aggressive indium-tin-oxide thickness downscaling. By leveraging such a feature to change indium-tin-oxide from metal-like into semiconductor-like, in conjunction with a novel heterogeneous lateral design facilitated by an innovative digital etch, we demonstrated an indium-tin-oxide Schottky diode with a cutoff frequency reaching terahertz band. By pushing the boundaries of thin-film Schottky diodes, our research offers a potential enabler for future fifth-generation/sixth-generation networks, empowering diverse applications.

6.
J Proteome Res ; 23(5): 1593-1602, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38626392

RESUMEN

With the rapid expansion of sequencing of genomes, the functional annotation of proteins becomes a bottleneck in understanding proteomes. The Chromosome-centric Human Proteome Project (C-HPP) aims to identify all proteins encoded by the human genome and find functional annotations for them. However, until now there are still 1137 identified human proteins without functional annotation, called uPE1 proteins. Sequence alignment was insufficient to predict their functions, and the crystal structures of most proteins were unavailable. In this study, we demonstrated a new functional annotation strategy, AlphaFun, based on structural alignment using deep-learning-predicted protein structures. Using this strategy, we functionally annotated 99% of the human proteome, including the uPE1 proteins and missing proteins, which have not been identified yet. The accuracy of the functional annotations was validated using the known-function proteins. The uPE1 proteins shared similar functions to the known-function PE1 proteins and tend to express only in very limited tissues. They are evolutionally young genes and thus should conduct functions only in specific tissues and conditions, limiting their occurrence in commonly studied biological models. Such functional annotations provide hints for functional investigations on the uPE1 proteins. This proteome-wide-scale functional annotation strategy is also applicable to any other species.


Asunto(s)
Anotación de Secuencia Molecular , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteoma/análisis , Proteoma/química , Aprendizaje Profundo , Alineación de Secuencia , Genoma Humano , Proteómica/métodos , Bases de Datos de Proteínas
7.
J Proteome Res ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865581

RESUMEN

The Chromosome-Centric Human Proteome Project (C-HPP) aims to identify all proteins encoded by the human genome. Currently, the human proteome still contains approximately 2000 PE2-PE5 proteins, referring to annotated coding genes that lack sufficient protein-level evidence. During the past 10 years, it has been increasingly difficult to identify PE2-PE5 proteins in C-HPP approaches due to the limited occurrence. Therefore, we proposed that reanalyzing massive MS data sets in repository with newly developed algorithms may increase the occurrence of the peptides of these proteins. In this study, we downloaded 1000 MS data sets via the ProteomeXchange database. Using pFind software, we identified peptides referring to 1788 PE2-PE5 proteins. Among them, 11 PE2 and 16 PE5 proteins were identified with at least 2 peptides, and 12 of them were identified using 2 peptides in a single data set, following the criteria of the HPP guidelines. We found translation evidence for 16 of the 11 PE2 and 16 PE5 proteins in our RNC-seq data, supporting their existence. The properties of the PE2 and PE5 proteins were similar to those of the PE1 proteins. Our approach demonstrated that mining PE2 and PE5 proteins in massive data repository is still worthy, and multidata set peptide identifications may support the presence of PE2 and PE5 proteins or at least prompt additional studies for validation. Extremely high throughput could be a solution to finding more PE2 and PE5 proteins.

8.
J Am Chem Soc ; 146(3): 2122-2131, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38190443

RESUMEN

Bioconjugation chemistry has emerged as a powerful tool for the modification of diverse biomolecules under mild conditions. Tetrazole, initially proposed as a bioorthogonal photoclick handle for 1,3-dipolar cyclization with alkenes, was later demonstrated to possess broader photoreactivity with carboxylic acids, serving as a versatile bioconjugation and photoaffinity labeling probe. In this study, we unexpectedly discovered and validated the photoreactivity between tetrazole and primary amine to afford a new 1,2,4-triazole cyclization product. Given the significance of functionalized N-heterocycles in medicinal chemistry, we successfully harnessed the serendipitously discovered reaction to synthesize both pharmacologically relevant DNA-encoded chemical libraries (DELs) and small molecule compounds bearing 1,2,4-triazole scaffolds. Furthermore, the mild reaction conditions and stable 1,2,4-triazole linkage found broad application in photoinduced bioconjugation scenarios, spanning from intramolecular peptide macrocyclization and templated DNA reaction cross-linking to intermolecular photoaffinity labeling of proteins. Triazole cross-linking products on lysine side chains were identified in tetrazole-labeled proteins, refining the comprehensive understanding of the photo-cross-linking profiles of tetrazole-based probes. Altogether, this tetrazole-amine bioconjugation expands the current bioconjugation toolbox and creates new possibilities at the interface of medicinal chemistry and chemical biology.


Asunto(s)
Aminas , Proteínas , Aminas/química , Ciclización , Proteínas/química , Tetrazoles/química , ADN , Química Clic
9.
NMR Biomed ; 37(3): e5068, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37964107

RESUMEN

Inductively coupled radiofrequency (RF) coils are an inexpensive and simple method to realize wireless RF coils in magnetic resonance imaging (MRI), which can significantly ease the MRI scan setup and improve patient comfort because they do not require bulky components such as cables, baluns, preamplifiers, and connectors. However, volume-type wireless coils are typically operated in transmit/receive mode because detuning such coils is much more challenging due to their complex structure and multiple resonant modes. Meanwhile, adding too many detuning circuits to a wireless coil would decrease the coil's quality factor, impair the signal-to-noise ratio, and increase the cost. In this work, we proposed, constructed, and tested a novel wireless volume coil based on the Litzcage design for 1.5-T head imaging. Being an inductively coupled coil, it has a much simpler structure, resulting in a lighter weight and less bulky design. Despite its simpler structure, it exhibits comparable imaging performance with a commercial receive array, providing an alternative to conventional wired coils with a high cost and complex structure. The unique figure-of-8 conductor pattern within the rungs ensures that the proposed wireless Litzcage can be efficiently detuned with minimal detuning circuits.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Humanos , Imagen por Resonancia Magnética/métodos , Relación Señal-Ruido , Diseño de Equipo , Fantasmas de Imagen
10.
Environ Sci Technol ; 58(17): 7643-7652, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38573006

RESUMEN

Electrochemical-induced precipitation is a sustainable approach for tap-water softening, but the hardness removal performance and energy efficiency are vastly limited by the ultraslow ion transport and the superlow local HCO3-/Ca2+ ratio compared to the industrial scenarios. To tackle the challenges, we herein report an energy-efficient electrochemical tap-water softening strategy by utilizing an integrated cathode-anode-cathode (CAC) reactor in which the direction of the electric field is reversed to that of the flow field in the upstream cell, while the same in the downstream cell. As a result, the transport of ions, especially HCO3-, is significantly accelerated in the downstream cell under a flow field. The local HCO3-/Ca2+ ratio is increased by 1.5 times, as revealed by the finite element numerical simulation and in situ imaging. In addition, a continuous flow electrochemical system with an integrated CAC reactor is operated for 240 h to soften tap water. Experiments show that a much lower cell voltage (9.24 V decreased) and energy consumption (28% decreased) are obtained. The proposed ion-transport enhancement strategy by coupled electric and flow fields provides a new perspective on developing electrochemical technologies to meet the flexible and economic demand for tap-water softening.


Asunto(s)
Transporte Iónico , Electricidad , Agua Potable , Electrodos , Purificación del Agua/métodos , Técnicas Electroquímicas/métodos
11.
Environ Sci Technol ; 58(25): 11185-11192, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38869092

RESUMEN

Electrocatalytic hydrogen atom-hydroxyl radical (H*-·OH) redox system is a promising approach for contaminant removal and mineralization. However, its working mechanism, especially the effect of H*, remains unclear, hindering its practical application. Herein, we constructed an electrochemical reactor equipped with our self-made Pd-loaded Ti/TiO2 nanotube cathode and a commercial boron-doped diamond anode. After fulfilling the electrode characterization and free radical detection, we employed coumarin and 7-azido-4-methylcoumarin as probes to confirm the participation of H* in the transformation of organic compounds. A comprehensive study on the degradation kinetics, reaction, and mineralization mechanisms using benzoic acid (BA) and 4-chlorophenol (4-CP) as model compounds was further conducted. The rate constants and total organic carbon removal of BA and 4-CP in the redox system increased compared with those of the individual oxidation and reduction processes. Theoretical calculations demonstrate that H* opens up alternative pathways for BA and 4-CP ring cleavage, forming quinones as reactive intermediates. Furthermore, H* facilitates the mineralization of the typical intermediates, maleic acid and fumaric acid, through C=C bond addition and H-abstraction from the 1,1-diol structure. The presence of H* provides alternative pathways for pollutant transformation, consequently reducing the treatment duration.


Asunto(s)
Hidrógeno , Oxidación-Reducción , Hidrógeno/química , Cinética
12.
BMC Anesthesiol ; 24(1): 176, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760677

RESUMEN

BACKGROUND: The role of mechanical power on pulmonary outcomes after thoracic surgery with one-lung ventilation was unclear. We investigated the association between mechanical power and postoperative pulmonary complications in patients undergoing thoracoscopic lung resection surgery. METHODS: In this single-center, prospective observational study, 622 patients scheduled for thoracoscopic lung resection surgery were included. Volume control mode with lung protective ventilation strategies were implemented in all participants. The primary endpoint was a composite of postoperative pulmonary complications during hospital stay. Multivariable logistic regression models were used to evaluate the association between mechanical power and outcomes. RESULTS: The incidence of pulmonary complications after surgery during hospital stay was 24.6% (150 of 609 patients). The multivariable analysis showed that there was no link between mechanical power and postoperative pulmonary complications. CONCLUSIONS: In patients undergoing thoracoscopic lung resection with standardized lung-protective ventilation, no association was found between mechanical power and postoperative pulmonary complications. TRIAL REGISTRATION: Trial registration number: ChiCTR2200058528, date of registration: April 10, 2022.


Asunto(s)
Ventilación Unipulmonar , Complicaciones Posoperatorias , Humanos , Estudios Prospectivos , Masculino , Femenino , Ventilación Unipulmonar/métodos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Persona de Mediana Edad , Anciano , Neumonectomía/efectos adversos , Neumonectomía/métodos , Toracoscopía/métodos , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/epidemiología , Cirugía Torácica Asistida por Video/métodos , Cirugía Torácica Asistida por Video/efectos adversos
13.
Chem Soc Rev ; 52(5): 1549-1590, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36602188

RESUMEN

Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.


Asunto(s)
Materiales Biomiméticos , Nanoestructuras , Biomimética , Péptidos/química , Proteínas , Nanoestructuras/química , Materiales Biomiméticos/química
14.
Chem Soc Rev ; 52(14): 4644-4671, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37325843

RESUMEN

Hydrogen is an essential energy carrier which will address the challenges posed by the energy crisis and climate change. Photoelectrochemical water splitting (PEC) is an important method for producing solar-powered hydrogen. The PEC tandem configuration harnesses sunlight as the exclusive energy source to drive both the hydrogen (HER) and oxygen evolution reactions (OER), simultaneously. Therefore, PEC tandem cells have been developed and gained tremendous interest in recent decades. This review describes the current status of the development of tandem cells for unbiased photoelectrochemical water splitting. The basic principles and prerequisites for constructing PEC tandem cells are introduced first. We then review various single photoelectrodes for use in water reduction or oxidation, and highlight the current state-of-the-art discoveries. Second, a close look into recent developments of PEC tandem cells in water splitting is provided. Finally, a perspective on the key challenges and prospects for the development of tandem cells for unbiased PEC water splitting are given.

15.
Nano Lett ; 23(24): 11601-11607, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38063776

RESUMEN

Two-dimensional (2D) semiconductors have attracted great attention as a novel class of gain materials for low-threshold, on-chip coherent light sources. Despite several experimental reports on lasing, the underlying gain mechanism of 2D materials remains elusive due to a lack of key information, including modal gain and the confinement factor. Here, we demonstrate a novel approach to directly determine the absorption coefficient of monolayer WS2 by characterizing the whispering gallery modes in a van der Waals microdisk cavity. By exploiting the cavity's high intrinsic quality factor of 2.5 × 104, the absorption coefficient spectrum and confinement factor are experimentally resolved with unprecedented accuracy. The excitonic gain reduces the WS2 absorption coefficient by 2 × 104 cm-1 at room temperature, and the experimental confinement factor is found to agree with the theoretical prediction. These results are essential for unveiling the gain mechanism in emergent, low-threshold 2D-semiconductor-based laser devices.

16.
Angew Chem Int Ed Engl ; 63(17): e202401077, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38456382

RESUMEN

Circularly polarized luminescence (CPL) plays a pivotal role in cutting-edge display and information technologies. Currently achieving precise color control and dynamic signal regulation in CPL still remains challenging due to the elusory relationship between fluorescence and chirality. Inspired by the natural mechanisms governing color formation and chiral interaction, we proposed an addition-subtraction principle theory to address this issue. Three fluorene-based polymers synthesized by Suzuki polycondensation with different electron-deficient monomers exhibit similar structures and UV/Vis absorption, but distinct fluorescence emissions due to intramolecular charge transfer. Based on this, precise-color CPL-active films are obtained through quantitative supramolecular co-assembly directed by addition principle. Particularly, an ideal white-emitting CPL film (CIE coordinates: (0.33, 0.33)) is facilely fabricated with a high quantum yield of 80.8 % and a dissymmetry factor (glum) of 1.4×10-2. Structural analysis reveals that the ordered stacking orientation favors higher glum. Furthermore, to address the dynamically regulated challenge, the comparable subtraction principle is proposed, involving a contactless chiral communication between excited and ground states. The representative system consisting of as-prepared fluorene-based polymers and chirality-selective absorption azobenzene (Azo)-containing polymers is constructed, achieving CPL weakening, reversal, and enhancement. Finally, a switchable quick response code is realized based on trans-cis isomerization of Azo moiety.

17.
Angew Chem Int Ed Engl ; 63(12): e202318924, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38270897

RESUMEN

Singlet oxygen (1 O2 ) plays a significant role in environmental and biomedical disinfection fields. Electrocatalytic processes hold great potential for 1 O2 generation, but remain challenging. Herein, a facile Ni doping converted spin-state transition approach is reported for boosting 1 O2 production. Magnetic analysis and theoretical calculations reveal that Ni occupied at the octahedral site of Co3 O4 can effectively induce a low-to-high spin-state transition. The high-spin Ni-Co3 O4 generate appropriate binding strength and enhance electron transfer between the Co centers with oxygen intermediates, thereby improving the catalytic activity of Ni-Co3 O4 for effective generating 1 O2 . In neutral conditions, 1×106  CFU mL-1 Gram-negative ESBL-producing Escherichia coli (E. coli) could be inactivated by Ni-Co3 O4 system within 5 min. Further antibacterial mechanisms indicate that 1 O2 can lead to cell membrane damage and DNA degradation so as to irreversible cell death. Additionally, the developed Ni-Co3 O4 system can effectively inactivate bacteria from wastewater and bioaerosols. This work provides an effective strategy for designing high-spin electrocatalysis to boost 1 O2 generation for disinfection process.


Asunto(s)
Desinfección , Oxígeno Singlete , Escherichia coli , Hibridación de Ácido Nucleico , Hibridación Genética , Oxígeno
18.
J Neurosci ; 42(34): 6487-6505, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35896423

RESUMEN

Retinal bipolar cells (BCs) compose the canonical vertical excitatory pathway that conveys photoreceptor output to inner retinal neurons. Although synaptic transmission from BC terminals is thought to rely almost exclusively on Ca2+ influx through voltage-gated Ca2+ (CaV) channels mediating L-type currents, the molecular identity of CaV channels in BCs is uncertain. Therefore, we combined molecular and functional analyses to determine the expression profiles of CaV α1, ß, and α2δ subunits in mouse rod bipolar (RB) cells, BCs from which the dynamics of synaptic transmission are relatively well-characterized. We found significant heterogeneity in CaV subunit expression within the RB population from mice of either sex, and significantly, we discovered that transmission from RB synapses was mediated by Ca2+ influx through P/Q-type (CaV2.1) and N-type (CaV2.2) conductances as well as the previously-described L-type (CaV1) and T-type (CaV3) conductances. Furthermore, we found both CaV1.3 and CaV1.4 proteins located near presynaptic ribbon-type active zones in RB axon terminals, indicating that the L-type conductance is mediated by multiple CaV1 subtypes. Similarly, CaV3 α1, ß, and α2δ subunits also appear to obey a "multisubtype" rule, i.e., we observed a combination of multiple subtypes, rather than a single subtype as previously thought, for each CaV subunit in individual cells.SIGNIFICANCE STATEMENT Bipolar cells (BCs) transmit photoreceptor output to inner retinal neurons. Although synaptic transmission from BC terminals is thought to rely almost exclusively on Ca2+ influx through L-type voltage-gated Ca2+ (CaV) channels, the molecular identity of CaV channels in BCs is uncertain. Here, we report unexpectedly high molecular diversity of CaV subunits in BCs. Transmission from rod bipolar (RB) cell synapses can be mediated by Ca2+ influx through P/Q-type (CaV2.1) and N-type (CaV2.2) conductances as well as the previously-described L-type (CaV1) and T-type (CaV3) conductances. Furthermore, CaV1, CaV3, ß, and α2δ subunits appear to obey a "multisubtype" rule, i.e., a combination of multiple subtypes for each subunit in individual cells, rather than a single subtype as previously thought.


Asunto(s)
Canales de Calcio Tipo L , Sinapsis , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Ratones , Terminales Presinápticos/metabolismo , Retina/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología
19.
Genes Immun ; 24(2): 99-107, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36890220

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive disease with poor prognosis. Acetylation modifications affect a great number of biological processes of malignant tumors. The current study aims at revealing the role of acetylation-related mechanism in TNBC progression. Methyltransferase like-3 (METTL3) was found to be downregulated in TNBC cells via quantitative polymerase chain reaction (qPCR) and western blot analyses. Co-Immunoprecipitation (Co-IP) and GST pulldown assays revealed the interaction between acetyl-CoA acetyltransferase 1 (ACAT1) and METTL3. Through further immunoprecipitation (IP) assay, we determined that ACAT1 stabilizes METTL3 protein via inhibiting the degradation of ubiquitin-proteasome. Functionally, ACAT1 inhibits TNBC cell migration and invasion. Moreover, nuclear receptor subfamily 2 group F member 6 (NR2F6) regulates ACAT1 expression at transcriptional level. Finally, we demonstrated that NR2F6/ACAT/METTL3 axis suppresses the migration and invasion of TNBC cells via METTL3. In conclusion, NR2F6 transcriptionally activates ACAT1 and promotes the suppressive effects of ACAT1-mediated METTL3 acetylation on TNBC cell migration and invasion.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Acetiltransferasas/metabolismo , Acetilación , Movimiento Celular/genética , Proliferación Celular , Proteínas Represoras/metabolismo , Metiltransferasas/genética , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo
20.
J Proteome Res ; 22(4): 1080-1091, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36511424

RESUMEN

Investigating the functions of the proteins with no or less functional annotations is an important goal of the HPP (Human Proteome Project) Grand Project. In this study, we investigated the function of such a protein, ZSWIM1 (C20orf162), its gene located on chromosome 20. Its expression is upregulated in lung adenocarcinoma compared with the adjacent normal tissues and negatively correlated with the overall survival. Overexpressing ZSWIM1 markedly promotes the proliferation, migration, invasion as well as epithelial-to-mesenchymal transition in lung adenocarcinoma cells, while knocking down ZSWIM1 functions oppositely. The interactome of ZSWIM1 was identified by immunoprecipitation-mass spectrometry, and we verified the interaction of ZSWIM1 with the potential partner, STK38. ZSWIM1 antagonized the function of STK38. Mechanically, ZSWIM1 promoted the activation of MEKK2/ERK1/2 pathway through interacting with STK38, leading to the release of MEKK2. Taken together, ZSWIM1 can be annotated as an oncogene in lung adenocarcinoma, and the STK38/MEKK2/ERK1/2 axis mediates its promoting role in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Sistema de Señalización de MAP Quinasas , Fosforilación , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA