Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 300, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816763

RESUMEN

Optimizing the efficiency of definitive endoderm (DE) differentiation is necessary for the generation of diverse organ-like structures. In this study, we used the small molecule inhibitor saracatinib (SAR) to enhance DE differentiation of human embryonic stem cells and induced pluripotent stem cells. SAR significantly improved DE differentiation efficiency at low concentrations. The interaction between SAR and Focal Adhesion Kinase (FAK) was explored through RNA-seq and molecular docking simulations, which further supported the inhibition of DE differentiation by p-FAK overexpression in SAR-treated cells. In addition, we found that SAR inhibited the nuclear translocation of Yes-associated protein (YAP), a downstream effector of FAK, which promoted DE differentiation. Moreover, the addition of SAR enabled a significant reduction in activin A (AA) from 50 to 10 ng/mL without compromising DE differentiation efficiency. For induction of the pancreatic lineage, 10 ng/ml AA combined with SAR at the DE differentiation stage yielded a comparative number of PDX1+/NKX6.1+ pancreatic progenitor cells to those obtained by 50 ng/ml AA treatment. Our study highlights SAR as a potential modulator that facilitates the cost-effective generation of DE cells and provides insight into the orchestration of cell fate determination.


Asunto(s)
Benzodioxoles , Diferenciación Celular , Endodermo , Quinazolinas , Transducción de Señal , Humanos , Diferenciación Celular/efectos de los fármacos , Endodermo/efectos de los fármacos , Endodermo/citología , Endodermo/metabolismo , Benzodioxoles/farmacología , Transducción de Señal/efectos de los fármacos , Quinazolinas/farmacología , Factores de Transcripción/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Activinas/metabolismo , Simulación del Acoplamiento Molecular
2.
BMC Infect Dis ; 24(1): 152, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297200

RESUMEN

BACKGROUND: Pneumocystis jirovecii pneumonia (PJP) is a life-threatening and severe disease in immunocompromised hosts. A synergistic regimen based on the combination of sulfamethoxazole-trimethoprim (SMX-TMP) with caspofungin and glucocorticosteroids (GCSs) may be a potential first-line therapy for PJP. Therefore, it is important to explore the efficacy and safety of this synergistic therapy for treating non-HIV-related PJP patients. METHODS: We retrospectively analysed the data of 38 patients with non-HIV-related PJP at the First Affiliated Hospital of Xi'an Jiaotong University. Patients were divided into two groups: the synergistic therapy group (ST group, n = 20) and the monotherapy group (MT group, n = 18). All patients were from the ICU and were diagnosed with severe PJP. In the ST group, all patients were treated with SMX-TMP (TMP 15-20 mg/kg per day) combined with caspofungin (70 mg as the loading dose and 50 mg/day as the maintenance dose) and a GCS (methylprednisolone 40-80 mg/day). Patients in the MT group were treated only with SMX-TMP (TMP 15-20 mg/kg per day). The clinical response, adverse events and mortality were compared between the two groups. RESULTS: The percentage of patients with a positive clinical response in the ST group was significantly greater than that in the MT group (100.00% vs. 66.70%, P = 0.005). The incidence of adverse events in the MT group was greater than that in the ST group (50.00% vs. 15.00%, P = 0.022). Furthermore, the dose of TMP and duration of fever in the ST group were markedly lower than those in the MT group (15.71 mg/kg/day vs. 18.35 mg/kg/day (P = 0.001) and 7.00 days vs. 11.50 days (P = 0.029), respectively). However, there were no significant differences in all-cause mortality or duration of hospital stay between the MT group and the ST group. CONCLUSIONS: Compared with SMZ/TMP monotherapy, synergistic therapy (SMZ-TMP combined with caspofungin and a GCS) for the treatment of non-HIV-related PJP can increase the clinical response rate, decrease the incidence of adverse events and shorten the duration of fever. These results indicate that synergistic therapy is effective and safe for treating severe non-HIV-related PJP.


Asunto(s)
Pneumocystis carinii , Neumonía por Pneumocystis , Humanos , Neumonía por Pneumocystis/tratamiento farmacológico , Combinación Trimetoprim y Sulfametoxazol/efectos adversos , Caspofungina/uso terapéutico , Estudios Retrospectivos , Centros de Atención Terciaria , Corticoesteroides/uso terapéutico
3.
Angew Chem Int Ed Engl ; : e202409698, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924667

RESUMEN

While the ambient N2 reduction to ammonia (NH3) using H2O as hydrogen source (2N2+6H2O=4NH3+3O2) is known as a promising alternative to the Haber-Bosch process, the high bond energy of N≡N bond leads to the extremely low NH3 yield. Herein, we report a highly efficient catalytic system for ammonia synthesis using the low-temperature dielectric barrier discharge plasma to activate inert N2 molecules into the activated nitrogen species, which can efficiently react with the confined and concentrated H2O molecules in porous metal-organic framework (MOF) reactors with V3+, Cr3+, Mn3+, Fe3+, Co2+, Ni2+ and Cu2+ ions. Specially, the Fe-based catalyst MIL-100(Fe) causes a superhigh NH3 yield of 22.4 mmol g-1 h-1. The investigation of catalytic performance and systematic characterizations of MIL-100(Fe) during the plasma-driven catalytic reaction unveils that the in situ generated defective Fe-O clusters are the highly active sites and NH3 molecules indeed form inside the MIL-100(Fe) reactor. The theoretical calculation reveals that the porous MOF catalysts have different adsorption capacity for nitrogen species on different catalytic metal sites, where the optimal MIL-100(Fe) has the lowest energy barrier for the rate-limiting *NNH formation step, significantly enhancing efficiency of nitrogen fixation.

4.
Angew Chem Int Ed Engl ; : e202406007, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687057

RESUMEN

While the mild production of syngas (a mixture of H2 and CO) from CO2 and H2O is a promising alternative to the coal-based chemical engineering technologies, the inert nature of CO2 molecules, unfavorable splitting pathways of H2O and unsatisfactory catalysts lead to the challenge in the difficult integration of high CO2 conversion efficiency with produced syngas with controllable H2/CO ratios in a wide range. Herein, we report an efficient plasma-driven catalytic system for mild production of pure syngas over porous metal-organic framework (MOF) catalysts with rich confined H2O molecules, where their syngas production capacity is regulated by the in situ evolved ligand defects and the plasma-activated intermediate species of CO2 molecules. Specially, the Cu-based catalyst system achieves 61.9 % of CO2 conversion and the production of pure syngas with wide H2/CO ratios of 0.05 : 1-4.3 : 1. As revealed by the experimental and theoretical calculation results, the in situ dynamic structure evolution of Cu-containing MOF catalysts favors the generation of coordinatively unsaturated metal active sites with optimized geometric and electronic characteristics, the adsorption of reactants, and the reduced energy barriers of syngas-production potential-determining steps of the hydrogenation of CO2 to *COOH and the protonation of H2O to *H.

5.
Angew Chem Int Ed Engl ; 63(22): e202404258, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38454791

RESUMEN

Engineering advantageous defects to construct well-defined active sites in catalysts is promising but challenging to achieve efficient photocatalytic NH3 synthesis from N2 and H2O due to the chemical inertness of N2 molecule. Here, we report defective Fe-based metal-organic framework (MOF) photocatalysts via a non-thermal plasma-assisted synthesis strategy, where their NH3 production capability is synergistically regulated by two types of defects, namely, bridging organic ligands and terminal inorganic ligands (OH- and H2O). Specially, the optimized MIL-100(Fe) catalysts, where there are only terminal inorganic ligand defects and coexistence of dual defects, exhibit the respective 1.7- and 7.7-fold activity enhancement comparable to the pristine catalyst under visible light irradiation. As revealed by experimental and theoretical calculation results, the dual defects in the catalyst induce the formation of abundant and highly accessible coordinatively unsaturated Fe active sites and synergistically optimize their geometric and electronic structures, which favors the injection of more d-orbital electrons in Fe sites into the N2 π* antibonding orbital to achieve N2 activation and the formation of a key intermediate *NNH in the reaction. This work provides a guidance on the rational design and accurate construction of porous catalysts with precise defective structures for high-performance activation of catalytic molecules.

6.
Small ; 19(44): e2301327, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37415572

RESUMEN

The systematical understanding of metal-dependent activity in electrocatalyzing oxygen reduction reaction (ORR), a vital reaction with sluggish kinetics for zinc-air batteries, remains quite unclear. An atomic and spatial engineering modulating ORR activity over hollow carbon quasi-sphere (HCS) confined in a series of single M-N (M = Cu, Mn, Ni) sites is reported here. Based on the theoretical prediction and experimental validation, Cu-N4 site with the lowest overpotential shows a better ORR kinetics than Mn-N4 and Ni-N4 . The ORR activity of single-atom Cu center can be further improved by decreasing the coordination number of N to two, namely Cu-N2 , due to the enhancement of electrons with lower coordination structure. Benefitting from the unique spatial confinement effect of the HCS structure in modulating electronic feature of active sites, the Cu-N2 site confined in HCS also delivers highly improved ORR kinetics and activity relative to that on planner graphene. Additionally, the best catalyst holds excellent promise in the application of zinc-air batteries. The findings will pave a new way to atomically and electronically tune active sites with high efficiency for other single-atom catalysts.

7.
Cell Mol Life Sci ; 79(10): 538, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36190571

RESUMEN

Early apoptosis of grafted islets is one of the main factors affecting the efficacy of islet transplantation. The combined transplantation of islet cells and bone marrow mesenchymal stem cells (BMSCs) can significantly improve the survival rate of grafted islets. Transcription factor insulin gene enhancer binding protein 1 (ISL1) is shown to promote the angiogenesis of grafted islets and the paracrine function of mesenchymal stem cells during the co-transplantation, yet the regulatory mechanism remains unclear. By using ISL1-overexpressing BMSCs and the subtherapeutic doses of islets for co-transplantation, we managed to reduce the apoptosis and improve the survival rate of the grafts. Our metabolomics and proteomics data suggested that ISL1 upregulates aniline (ANLN) and Inhibin beta A chain (INHBA), and stimulated the release of caffeine in the BMSCs. We then demonstrated that the upregulation of ANLN and INHBA was achieved by the binding of ISL1 to the promoter regions of the two genes. In addition, ISL1 could also promote BMSCs to release exosomes with high expression of ANLN, secrete INHBA and caffeine, and reduce streptozocin (STZ)-induced islets apoptosis. Thus, our study provides mechanical insight into the islet/BMSCs co-transplantation and paves the foundation for using conditioned medium to mimic the ISL1-overexpressing BMSCs co-transplantation.


Asunto(s)
Exosomas , Insulinas , Islotes Pancreáticos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Compuestos de Anilina/metabolismo , Apoptosis/genética , Cafeína/metabolismo , Cafeína/farmacología , Medios de Cultivo Condicionados , Subunidades beta de Inhibinas , Insulinas/metabolismo , Islotes Pancreáticos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Estreptozocina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Arch Toxicol ; 97(4): 947-961, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36795116

RESUMEN

Drug-induced testicular injury (DITI) is one of the often-observed and challenging safety issues seen during drug development. Semen analysis and circulating hormones currently utilized have significant gaps in their ability to detect testicular damage accurately. In addition, no biomarkers enable a mechanistic understanding of the damage to the different regions of the testis, such as seminiferous tubules, Sertoli, and Leydig cells. MicroRNAs (miRNAs) are a class of non-coding RNAs that modulate gene expression post-transcriptionally and have been indicated to regulate a wide range of biological pathways. Circulating miRNAs can be measured in the body fluids due to tissue-specific cell injury/damage or toxicant exposure. Therefore, these circulating miRNAs have become attractive and promising non-invasive biomarkers for assessing drug-induced testicular injury, with several reports on their use as safety biomarkers for monitoring testicular damage in preclinical species. Leveraging emerging tools such as 'organs-on-chips' that can emulate the human organ's physiological environment and function is starting to enable biomarker discovery, validation, and clinical translation for regulatory qualification and implementation in drug development.


Asunto(s)
MicroARN Circulante , MicroARNs , Masculino , Humanos , Testículo/metabolismo , MicroARN Circulante/metabolismo , MicroARNs/genética , Biomarcadores/metabolismo , Células Intersticiales del Testículo/metabolismo
9.
Nano Lett ; 22(8): 3503-3511, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35315671

RESUMEN

Metal ion substitution and anion exchange are two effective strategies for regulating the electronic and geometric structure of spinel. However, the optimal location of foreign metallic cations and the exact role of these metals and anions remain elusive. Herein, CoFe2O4-based hollow nanospheres with outstanding oxygen evolution reaction activity are prepared by Cr3+ substitution and S2- exchange. X-ray absorption spectra and theoretical calculations reveal that Cr3+ can be precisely doped into octahedral (Oh) Fe sites and simultaneously induce Co vacancy, which can activate adjacent tetrahedral (Td) Fe3+. Furthermore, S2- exchange results in structure distortion of Td-Fe due to compressive strain effect. The change in the local geometry of Td-Fe causes the *OOH intermediate to deviate from the y-axis plane, thus enhancing the adsorption of the *OOH. The Co vacancy and S2- exchange can adjust the geometric and electronic structure of Td-Fe, thus activating the inert Td-Fe and improving the electrochemical performance.


Asunto(s)
Metales , Oxígeno , Catálisis , Cationes/química , Metales/química , Oxígeno/química
10.
Angew Chem Int Ed Engl ; 62(4): e202214516, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36420958

RESUMEN

Single crystal surfaces with highly coordinated sites very often hold high specific activities toward oxygen reduction reaction (ORR) and others. Transposing their high specific activity to practical high-surface-area electrocatalysts remains challenging. Here, ultrathin Pt(100) alloy surface is constructed via epitaxial growth. The surface shows 3.1-6.9 % compressive strain and bulk-like characteristics as demonstrated by site-probe reactions and different spectroscopies. Its ORR activity exceeds that of bulk Pt3 Ni(100) and Pt(111) and presents a 19-fold increase in specific activity and a 13-fold increase in mass activity relative to commercial Pt/C. Moreover, the electrochemically active surface area (ECSA) is increased by 4-fold compared to traditional thin films (e.g. NSTF), which makes the catalyst more tolerant to voltage loss at high current densities under fuel cell operation. This work broadens the family of extended surface catalysts and highlights the knowledge-driven approach in the development of advanced electrocatalysts.

11.
Angew Chem Int Ed Engl ; 62(13): e202217473, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36738169

RESUMEN

Atomically dispersed metal catalysts show potential advantages in N2 reduction reaction (NRR) due to their excellent activity and efficient metal utilization. Unfortunately, the reported catalysts usually exhibit unsatisfactory NRR activity due to their poor N2 adsorption and activation. Herein, we report a novel Sn atomically dispersed protuberance (ADP) by coordination with substrate C and O to induce positive charge accumulation on Sn site for improving its N2 adsorption, activation and NRR performance. The extended X-ray absorption fine structure (EXAFS) spectra confirmed the local coordination structure of the Sn ADPs. NRR activity was significantly promoted via Sn ADPs, exhibiting a remarkable NH3 yield (RNH3 ) of 28.3 µg h-1 mgcat -1 (7447 µg h-1 mgSn -1 ) at -0.3 V. Furthermore, the enhanced N2 Hx intermediates was verified by in situ experiments, yielding consistent results with DFT calculation. This work opens a new avenue to regulate the activity and selectivity of N2 fixation.

12.
Angew Chem Int Ed Engl ; 62(50): e202312409, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37681482

RESUMEN

Currently, single-atom catalysts (SACs) research mainly focuses on transition metal atoms as active centers. Due to their delocalized s/p-bands, the s-block main group metal elements are typically regarded as catalytically inert. Herein, an s-block potassium SAC (K-N-C) with K-N4 configuration is reported for the first time, which exhibits excellent oxygen reduction reaction (ORR) activity and stability under alkaline conditions. Specifically, the half-wave potential (E1/2 ) is up to 0.908 V, and negligible changes in E1/2 are observed after 10,000 cycles. In addition, the K-N-C offers an exceptional power density of 158.1 mW cm-2 and remarkable durability up to 420 h in a Zn-air battery. Density functional theory (DFT) simulations show that K-N-C has bifunctional active K and C sites, can optimize the free energy of ORR reaction intermediates, and adjust the rate-determining steps. The crystal orbital Hamilton population (COHP) results showed that the s orbitals of K played a major role in the adsorption of intermediates, which was different from the d orbitals in transition metals. This work significantly guides the rational design and catalytic mechanism research of s-block SACs with high ORR activity.

13.
Angew Chem Int Ed Engl ; 62(27): e202304412, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37140201

RESUMEN

Dual-atom catalysts (DAC) are deemed as promising electrocatalysts due to the abundant active sites and adjustable electronic structure, but the fabrication of well-defined DAC is still full of challenges. Herein, bonded Fe dual-atom catalysts (Fe2 DAC) with Fe2 N6 C8 O2 configuration were developed through one-step carbonization of a preorganized covalent organic framework with bimetallic Fe chelation sites (Fe2 COF). The transition from Fe2 COF to Fe2 DAC involved the dissociation of the nanoparticles and the capture of atoms by carbon defects. Benefitting from the optimized d-band center and enhanced adsorption of OOH* intermediates, Fe2 DAC exhibited outstanding oxygen reduction activity with a half-wave potential of 0.898 V vs. RHE. This work will guide more fabrication of dual-atom and even cluster catalysts from preorganized COF in the future.

14.
Angew Chem Int Ed Engl ; 62(6): e202216592, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36478491

RESUMEN

We explored a co-dissolved strategy to embed mono-dispersed Pt center into V2 O5 support via dissolving [PtV9 O28 ]7- into [V10 O28 ]6- aqueous solution. The uniform dispersion of [PtV9 O28 ]7- in [V10 O28 ]6- solution allows [PtV9 O28 ]7- to be surrounded by [V10 O28 ]6- clusters via a freeze-drying process. The V centers in both [PtV9 O28 ]7- and [V10 O28 ]6- were converted into V2 O5 via a calcination process to stabilize Pt center. These double separations can effectively prevent the Pt center agglomeration during the high-temperature conversion process, and achieve 100 % utilization of Pt in [PtV9 O28 ]7- . The resulting Pt-V2 O5 single-atom-site catalysts exhibit a CH4 yield of 247.6 µmol g-1 h-1 , 25 times higher than that of Pt nanoparticle on the V2 O5 support, which was accompanied by the lactic acid photooxidation to form pyruvic acid. Systematical investigations on this unambiguous structure demonstrate an important role of Pt-O atomic pair synergy for highly efficient CO2 photoreduction.

15.
Angew Chem Int Ed Engl ; 62(4): e202213351, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36357325

RESUMEN

The direct electrochemical nitric oxide reduction reaction (NORR) is an attractive technique for converting NO into NH3 with low power consumption under ambient conditions. Optimizing the electronic structure of the active sites can greatly improve the performance of electrocatalysts. Herein, we prepare body-centered cubic RuGa intermetallic compounds (i.e., bcc RuGa IMCs) via a substrate-anchored thermal annealing method. The electrocatalyst exhibits a remarkable NH4 + yield rate of 320.6 µmol h-1 mg-1 Ru with the corresponding Faradaic efficiency of 72.3 % at very low potential of -0.2 V vs. reversible hydrogen electrode (RHE) in neutral media. Theoretical calculations reveal that the electron-rich Ru atoms in bcc RuGa IMCs facilitate the adsorption and activation of *HNO intermediate. Hence, the energy barrier of the potential-determining step in NORR could be greatly reduced.

16.
J Am Chem Soc ; 144(5): 2085-2089, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35073480

RESUMEN

An unprecedented molecular pumping cassette was designed and implemented for the construction of molecular necklaces, that is, radial [n]catenanes. The mechanism was fully confirmed on a model [2]pseudorotaxane, and the novel clipping-followed-by-pumping strategy was used to prepare a series of [n]catenanes (n = 2-5). A pair of [3]catenane diastereomers sequentially threaded with two different wheels was also accomplished. The success of utilizing molecular pumping to construct molecular necklaces offers new insights into complex molecular architectures and expands the application of molecular machines in synthesis.

17.
Small ; 18(25): e2201927, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35595714

RESUMEN

The fabrication of heterostructures has inspired extensive interest in promoting the performance of solar cells or solar fuel production, but it is still challenging for nitrides to prepare structurally ordered heterostructures. Herein, one nickel nitride-based heterostructure composed of 1D Ni0.2 Mo0.8 N nanorods and 0D Ni3 N nanoparticles (denoted as NiMoN/NiN) is reported to exhibit significantly promoted hydrogen evolution reaction performance in both alkaline and neutral media. In particular, the optimal overpotential of the NiMoN/NiN sample at 10 mA cm-2 in 1 m KOH is 49 mV. The successful fabrication of 1D/0D heterostructures is mainly ascribed to morphology-inherited nitridation of 1D oxide precursor (denoted as NiMoO-NRs) in situ grown on Ni foam surface, and attributed to strong Lewis acid-base interaction that renders the Ni2+ ions emitted from the oxide precursor to well coordinate with NH3 for the formation of Ni3 N nanoparticles during the nitridation process. It is theoretically and experimentally demonstrated that the special 1D/0D heterostructure provides tandem active phases Ni0.2 Mo0.8 N and Ni3 N for synergistic promotion in lowering the activation energy of H2 O dissociation and optimizing the adsorption energy of H, respectively. This work may open a new avenue for developing highly active tandem electrocatalysts for promising renewable energy conversion.

18.
Small ; 18(11): e2106614, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35060330

RESUMEN

Selective aerobic oxidation of alcohols offers an attractive means to address challenges in the modern chemical industry, but the development of non-noble metal catalysts with superior efficacy for this reaction remains a grand challenge. Here, this study reports on such a catalyst based on atomically defined undercoordinated copper atoms over nitrogen-doped carbon support as an efficient, durable, and scalable heterogeneous catalyst for selective aerobic oxidation of alcohols. This catalyst exhibits extremely high intrinsic catalytic activity (TOF of 7692 h-1 ) in the oxidation of cinnamyl alcohol to afford cinnamaldehyde, along with exceptional recyclability (at least eight cycles), scalability, and broad substrate scope. DFT calculations suggest that the high activity derives from the low oxidation state and the unique coordination environment of the copper sites in the catalyst. These findings pave the way for the design of highly active and stable single atom catalysts to potentially address challenges in synthetic chemistry.

19.
Arch Virol ; 168(1): 11, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576583

RESUMEN

MicroRNAs (miRNAs) are endogenous small and noncoding RNA molecules (18-25 nt) that can regulate expression of their target genes post-transcriptionally. Previously, using high-throughput sequencing data obtained on a Solexa platform, we found that Bos taurus bta-miR-2904 (miR-2904) was significantly upregulated in Madin-Darby bovine kidney (MDBK) cells infected with bovine viral diarrhea virus (BVDV) strain NADL at 2, 6, and 18 h postinfection (hpi) compared to uninfected MDBK cells. Moreover, miR-2904 overexpression significantly reduced BVDV replication. However, the mechanism by which miR-2904 inhibits viral replication remains unclear. In this study, we used electron microscopy, laser confocal microscopy, dual-luciferase reporter analysis, real-time PCR, and Western blot assays to investigate the effect of the miR-2904 expression on BVDV NADL replication and virus-infection-induced autophagy. The results indicate that miR-2904 inhibits autophagy of MDBK cells by targeting autophagy-related gene 13 (ATG13), and overexpression of miR-2904 inhibited the replication of BVDV NADL.


Asunto(s)
Virus de la Diarrea Viral Bovina Tipo 1 , Virus de la Diarrea Viral Bovina Tipo 2 , Virus de la Diarrea Viral Bovina , MicroARNs , Virosis , Animales , Bovinos , Línea Celular , Virus de la Diarrea Viral Bovina/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Replicación Viral/genética , Factores de Transcripción , Autofagia/genética , Virus de la Diarrea Viral Bovina Tipo 2/genética , Diarrea , Virus de la Diarrea Viral Bovina Tipo 1/genética
20.
Environ Sci Technol ; 56(4): 2355-2365, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35112835

RESUMEN

During the lateral transport with subsurface flow, amounts of manufactured volatile organic chemicals and gases dissolved in groundwater are emitted into the atmosphere via upward diffusion through soils. Quantifying gas emissions is important for assessing environmental risk associated with these constituents (e.g., air pollution and global warming). It is widely recognized that the temperature would affect gas spreading in soils, which in turn regulates the gas emission from groundwater. However, the upward diffusive gas emission induced by the fluctuated ground surface temperature (GST) remains unexplored. A coupled heat transfer and gas transport model is developed to investigate emissions of tetrachloroethylene (PCE) and N2O, a typical manufactured volatile organic chemical and a natural gas, from groundwater with seasonally fluctuating GSTs. The results indicate that both PCE and N2O emissions vary significantly from month to month. Moreover, fluctuations of emissions lag obviously behind the fluctuation of GST due to the damping effects of both capillary fringe and soil sorption. The proposed model agrees with the observed data from a monolith lysimeter experiment well. The model is also applied to the estimations of N2O emissions from 12 aquifers in Walloon Region, Belgium. The estimated N2O emission is 12.6 µg N/m2/d that falls in the estimated range (9.0-21.5 µg N/m2/d) using the IPCC emission factor approach that commonly accounts for the N2O emission of groundwater discharge to surface water only. It suggests that the upward diffusion is non-negligible for estimations of N2O emission from groundwater.


Asunto(s)
Agua Subterránea , Compuestos Orgánicos Volátiles , Agricultura , Gases , Óxido Nitroso/análisis , Suelo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA