Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(8): e1010693, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35914009

RESUMEN

Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC's capture, whereas the low-virulence (LV) counterparts confer partial protection against KC's capture. Moreover, KC's capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination.


Asunto(s)
Infecciones por Klebsiella , Sepsis , Animales , Cápsulas Bacterianas , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Macrófagos del Hígado , Hígado , Ratones , Polisacáridos
2.
Mol Microbiol ; 116(2): 438-458, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33811693

RESUMEN

Streptococcus pneumoniae resides in the human upper airway as a commensal but also causes pneumonia, bacteremia, meningitis, and otitis media. It remains unclear how pneumococci adapt to nutritional conditions of various host niches. We here show that MetR, a LysR family transcriptional regulator, serves as a molecular adaptor for pneumococcal fitness, particularly in the upper airway. The metR mutant of strain D39 rapidly disappeared from the nasopharynx but was marginally attenuated in the lungs and bloodstream of mice. RNA-seq and ChIP-seq analyses showed that MetR broadly regulates transcription of the genes involved in methionine synthesis and other functions under methionine starvation. Genetic and biochemical analyses confirmed that MetR is essential for the activation of methionine synthesis but not uptake. Co-infection of influenza virus partially restored the colonization defect of the metR mutant. These results strongly suggest that MetR is particularly evolved for pneumococcal carriage in the upper airway of healthy individuals where free methionine is severely limited, but it becomes dispensable where environmental methionine is relatively more abundant (e.g., inflamed upper airway and sterile sites). To the best of our knowledge, MetR represents the first known regulator particularly for pneumococcal carriage in healthy individuals.


Asunto(s)
Proteínas Bacterianas/genética , Metionina/biosíntesis , Nasofaringe/microbiología , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/genética , Transactivadores/genética , Animales , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Metionina/metabolismo , Ratones , Infecciones Neumocócicas/patología , Transactivadores/metabolismo , Transcripción Genética/genética
3.
PLoS Pathog ; 16(3): e1008417, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187228

RESUMEN

Streptococcus pneumoniae is well known for phase variation between opaque (O) and transparent (T) colonies within clonal populations. While the O variant is specialized in invasive infection (with a thicker capsule and higher resistance to host clearance), the T counterpart possesses a relatively thinner capsule and thereby higher airway adherence and colonization. Our previous study found that phase variation is caused by reversible switches of the "opaque ON-or-OFF" methylomes or methylation patterns of pneumococcal genome, which is dominantly driven by the PsrA-catalyzed inversions of the DNA methyltransferase hsdS genes. This study revealed that switch frequency between the O and T variants is regulated by five transcriptional response regulators (rr) of the two-component systems (TCSs). The mutants of rr06, rr08, rr09, rr11 and rr14 produced significantly fewer O and more T colonies. Further mutagenesis revealed that RR06, RR08, RR09 and RR11 enrich the O variant by modulating the directions of the PsrA-catalyzed inversion reactions. In contrast, the impact of RR14 (RitR) on phase variation is independent of PsrA. Consistently, SMRT sequencing uncovered significantly diminished "opaque ON" methylome in the mutants of rr06, rr08, rr09 and rr11 but not that of rr14. Lastly, the phosphorylated form of RR11 was shown to activate the transcription of comW and two sugar utilization systems that are necessary for maintenance of the "opaque ON" genotype and phenotype. This work has thus uncovered multiple novel mechanisms that balance pneumococcal epigenetic status and physiology.


Asunto(s)
Proteínas Bacterianas , Metilación de ADN , Enzimas de Restricción-Modificación del ADN , ADN Bacteriano , Epigénesis Genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Streptococcus pneumoniae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
4.
Mol Cell ; 55(6): 931-937, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25201413

RESUMEN

Cyclic dinucleotides are a newly expanded class of second messengers that contribute to the regulation of multiple different pathways in bacterial, eukaryotic, and archaeal cells. The recently identified Vibrio cholerae dinucleotide cyclase (DncV, the gene product of VC0179) can generate three different cyclic dinucleotides and preferentially synthesize a hybrid cyclic-GMP-AMP. Here, we report the crystal structural and functional studies of DncV. We unexpectedly observed a 5-methyltetrahydrofolate diglutamate (5MTHFGLU2) molecule bound in a surface pocket opposite the nucleotide substrate-binding groove of DncV. Subsequent mutagenesis and functional studies showed that the enzymatic activity of DncV is regulated by folate-like molecules, suggesting the existence of a signaling pathway that links folate-like metabolism cofactors to the regulation of cyclic dinucleotide second messenger synthesis. Sequence analysis showed that the residues involved in 5MTHFGLU2 binding are highly conserved in DncV orthologs, implying the presence of this regulation mechanism in a wide variety of bacteria.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Ácido Fólico/análogos & derivados , Vibrio cholerae/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Ácido Fólico/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Vibrio cholerae/química
5.
Nucleic Acids Res ; 48(20): 11468-11485, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33119758

RESUMEN

Type I restriction-modification (R-M) systems consist of a DNA endonuclease (HsdR, HsdM and HsdS subunits) and methyltransferase (HsdM and HsdS subunits). The hsdS sequences flanked by inverted repeats (referred to as epigenetic invertons) in certain Type I R-M systems undergo invertase-catalyzed inversions. Previous studies in Streptococcus pneumoniae have shown that hsdS inversions within clonal populations produce subpopulations with profound differences in the methylome, cellular physiology and virulence. In this study, we bioinformatically identified six major clades of the tyrosine and serine family invertases homologs from 16 bacterial phyla, which potentially catalyze hsdS inversions in the epigenetic invertons. In particular, the epigenetic invertons are highly enriched in host-associated bacteria. We further verified hsdS inversions in the Type I R-M systems of four representative host-associated bacteria and found that each of the resultant hsdS allelic variants specifies methylation of a unique DNA sequence. In addition, transcriptome analysis revealed that hsdS allelic variations in Enterococcus faecalis exert significant impact on gene expression. These findings indicate that epigenetic switches driven by invertases in the epigenetic invertons broadly operate in the host-associated bacteria, which may broadly contribute to bacterial host adaptation and virulence beyond the role of the Type I R-M systems against phage infection.


Asunto(s)
Proteínas Bacterianas/genética , Enzimas de Restricción-Modificación del ADN/genética , Epigénesis Genética , Regulación Bacteriana de la Expresión Génica , Bacteroides fragilis/genética , Metilación de ADN , ADN Bacteriano/química , Enterococcus faecalis/genética , Secuencias Invertidas Repetidas , Streptococcus agalactiae/genética , Treponema denticola/genética
6.
Mol Microbiol ; 112(4): 1308-1325, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31396996

RESUMEN

Natural transformation mediates horizontal gene transfer, and thereby promotes exchange of antibiotic resistance and virulence traits among bacteria. Streptococcus pneumoniae, the first known transformable bacterium, rapidly activates and then terminates the transformation state, but it is unclear how the bacterium accomplishes this rapid turn-around at the protein level. This work determined the transcriptomic and proteomic dynamics during the window of pneumococcal transformation. RNA sequencing revealed a nearly uniform temporal pattern of rapid transcriptional activation and subsequent shutdown for the genes encoding transformation proteins. In contrast, mass spectrometry analysis showed that the majority of transformation proteins were substantially preserved beyond the window of transformation. However, ComEA and ComEC, major components of the DNA uptake apparatus for transformation, were completely degraded at the end of transformation. Further mutagenesis screening revealed that the membrane-associated serine protease HtrA mediates selective degradation of ComEA and ComEC, strongly suggesting that breakdown of the DNA uptake apparatus by HtrA is an important mechanism for termination of pneumococcal transformation. Finally, our mutagenesis analysis showed that HtrA inhibits natural transformation of Streptococcus mitis and Streptococcus gordonii. Together, this work has revealed that HtrA regulates the level and duration of natural transformation in multiple streptococcal species.


Asunto(s)
Serina Endopeptidasas/metabolismo , Transformación Bacteriana/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Transferencia de Gen Horizontal , Proteómica , Serina Endopeptidasas/genética , Serina Proteasas/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transcriptoma/genética , Transformación Genética/genética , Virulencia/genética
7.
Mol Microbiol ; 111(6): 1652-1670, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30883947

RESUMEN

Unlike external flagellated bacteria, spirochetes have periplasmic flagella (PF). Very little is known about how PF are assembled within the periplasm of spirochaetal cells. Herein, we report that FliD (BB0149), a flagellar cap protein (also named hook-associated protein 2), controls flagellin stability and flagellar filament assembly in the Lyme disease spirochete Borrelia burgdorferi. Deletion of fliD leads to non-motile mutant cells that are unable to assemble flagellar filaments and pentagon-shaped caps (10 nm in diameter, 12 nm in length). Interestingly, FlaB, a major flagellin protein of B. burgdorferi, is degraded in the fliD mutant but not in other flagella-deficient mutants (i.e., in the hook, rod, or MS-ring). Biochemical and genetic studies reveal that HtrA, a serine protease of B. burgdorferi, controls FlaB turnover. Specifically, HtrA degrades unfolded but not polymerized FlaB, and deletion of htrA increases the level of FlaB in the fliD mutant. Collectively, we propose that the flagellar cap protein FliD promotes flagellin polymerization and filament growth in the periplasm. Deletion of fliD abolishes this process, which leads to leakage of unfolded FlaB proteins into the periplasm where they are degraded by HtrA, a protease that prevents accumulation of toxic products in the periplasm.


Asunto(s)
Proteínas Bacterianas/química , Borrelia burgdorferi/química , Flagelos/química , Flagelina/química , Periplasma/química , Serina Endopeptidasas/química , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Flagelos/genética , Mutación , Polímeros/química , Pliegue de Proteína , Serina Endopeptidasas/genética
8.
Cell Microbiol ; 21(2): e12886, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29935042

RESUMEN

FlaG homologue has been found in several bacteria including spirochetes; however, its function is poorly characterised. In this report, we investigated the role of TDE1473, a putative FlaG, in the spirochete Treponema denticola, a keystone pathogen of periodontitis. TDE1473 resides in a large gene operon that is controlled by a σ70 -like promoter and encodes a putative FlaG protein of 123 amino acids. TDE1473 can be detected in the periplasmic flagella (PFs) of T. denticola, suggesting that it is a flagella-associated protein. Consistently, in vitro studies demonstrate that the recombinant TDE1473 interacts with the PFs in a dose-dependent manner and that such an interaction requires FlaA, a flagellar filament sheath protein. Deletion of TDE1473 leads to long and less motile mutant cells. Cryo-electron tomography analysis reveal that the wild-type cells have 2-3 PFs with nearly homogenous lengths (ranging from 3 to 6 µm), whereas the mutant cells have less intact PFs with disparate lengths (ranging from 0.1 to 9 µm). The phenotype of T. denticola TDE1473 mutant reported here is different from its counterparts in other bacteria, which provides insight into further understanding the role of FlaG in the regulation of bacterial cell morphogenesis and flagellation.


Asunto(s)
Proteínas Bacterianas/genética , Flagelos/genética , Treponema denticola/genética , Treponema denticola/patogenicidad , Secuencia de Aminoácidos , Periodontitis/microbiología , Regiones Promotoras Genéticas/genética
9.
J Bacteriol ; 201(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30617241

RESUMEN

Streptococcus pneumoniae (pneumococcus), a major human pathogen, is well known for its adaptation to various host environments. Multiple DNA inversions in the three DNA methyltransferase hsdS genes (hsdSA, hsdSB, and hsdSC) of the colony opacity determinant (cod) locus generate extensive epigenetic and phenotypic diversity. However, it is unclear whether all three hsdS genes are functional and how the inversions mechanistically occur. In this work, our transcriptional analysis revealed active expression of hsdSA but not hsdSB and hsdSC, indicating that hsdSB and hsdSC do not produce functional proteins and instead act as sources for altering the sequence of hsdSA by DNA inversions. Consistent with our previous finding that the hsdS inversions are mediated by three pairs of inverted repeats (IR1, IR2, and IR3), this study showed that the 15-bp IR1 and its upstream sequence are strictly required for the inversion between hsdSA and hsdSB Furthermore, a single tyrosine recombinase PsrA catalyzes the inversions mediated by IR1, IR2, and IR3, based on the dramatic loss of these inversions in the psrA mutant. Surprisingly, PsrA-independent inversions were also detected in the hsdS sequences flanked by the IR2 (298 bp) and IR3 (85 bp) long inverted repeats, which appear to occur spontaneously in the absence of site-specific or RecA-mediated recombination. Because the HsdS subunit is responsible for the sequence specificity of type I restriction modification DNA methyltransferase, these results have revealed that S. pneumoniae varies the methylation patterns of the genome DNA (epigenetic status) by employing multiple mechanisms of DNA inversion in the cod locus.IMPORTANCEStreptococcus pneumoniae is a major pathogen of human infections with the capacity for adaptation to host environments, but the molecular mechanisms behind this phenomenon remain unclear. Previous studies reveal that pneumococcus extends epigenetic and phenotypic diversity by DNA inversions in three methyltransferase hsdS genes of the cod locus. This work revealed that only the hsdS gene that is in the same orientation as hsdM is actively transcribed, but the other two are silent, serving as DNA sources for inversions. While most of the hsdS inversions are catalyzed by PsrA recombinase, the sequences bound by long inverted repeats also undergo inversions via an unknown mechanism. Our results revealed that S. pneumoniae switches the methylation patterns of the genome (epigenetics) by employing multiple mechanisms of DNA inversion.


Asunto(s)
Proteínas Bacterianas/genética , Inversión Cromosómica , Enzimas de Restricción-Modificación del ADN/genética , Sitios Genéticos , Streptococcus pneumoniae/genética , Proteínas Bacterianas/biosíntesis , Enzimas de Restricción-Modificación del ADN/biosíntesis , Perfilación de la Expresión Génica , Variación Genética , Secuencias Invertidas Repetidas , Recombinación Genética
10.
Infect Immun ; 86(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29891544

RESUMEN

The success of polysaccharide conjugate vaccines represents a major advance in the prevention of pneumococcal disease, but the power of these vaccines is limited by partial spectrum of coverage and high cost. Vaccines using immunoprotective proteins are a promising alternative type of pneumococcal vaccines. In this study, we constructed a library of antisera against conserved pneumococcal proteins predicted to be associated with cell surface or virulence using a combination of bioinformatic prediction and immunization of rabbits with recombinant proteins. Screening of the library by an opsonophagocytosis killing (OPK) assay identified the OPK-positive antisera, which represented 15 (OPK-positive) proteins. Further tests showed that virtually all of these OPK-positive antisera conferred passive protection against lethal infection of virulent pneumococci. More importantly, immunization with recombinant forms of three OPK-positive proteins (SP148, PBP2b, and ScpB), alone or in combination, conferred significant protection against lethal challenge of pneumococcal strains representing capsular serotypes 3, 4, and 6A in a mouse sepsis model. To our best knowledge, this work represents the first example in which novel vaccine candidates are successfully identified by the OPK screening. Our data have also provided further confirmation that the OPK activity may serve as a reliable in vitro surrogate for evaluating vaccine efficacy of pneumococcal proteins.


Asunto(s)
Proteínas Bacterianas/inmunología , Proteínas Opsoninas/inmunología , Fagocitosis , Infecciones Neumocócicas/prevención & control , Proteínas Recombinantes/administración & dosificación , Streptococcus pneumoniae/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Biología Computacional , Modelos Animales de Enfermedad , Femenino , Ensayos Analíticos de Alto Rendimiento , Inmunización , Inmunización Pasiva , Ratones , Ratones Endogámicos BALB C , Infecciones Neumocócicas/inmunología , Vacunas Neumococicas/inmunología , Conejos , Proteínas Recombinantes/inmunología , Streptococcus pneumoniae/patogenicidad
11.
PLoS Pathog ; 12(7): e1005762, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27427949

RESUMEN

DNA methylation is an important epigenetic mechanism for phenotypic diversification in all forms of life. We previously described remarkable cell-to-cell heterogeneity in epigenetic pattern within a clonal population of Streptococcus pneumoniae, a leading human pathogen. We here report that the epigenetic diversity is caused by extensive DNA inversions among hsdSA, hsdSB, and hsdSC, three methyltransferase hsdS genes in the Spn556II type-I restriction modification (R-M) locus. Because hsdSA encodes the sequence recognition subunit of this type-I R-M DNA methyltransferase, these site-specific recombinations generate pneumococcal cells with variable HsdSA alleles and thereby diverse genome methylation patterns. Most importantly, the DNA methylation pattern specified by the HsdSA1 allele leads to the formation of opaque colonies, whereas the pneumococci lacking HsdSA1 produce transparent colonies. Furthermore, this HsdSA1-dependent phase variation requires intact DNA methylase activity encoded by hsdM in the Spn556II (renamed colony opacity determinant or cod) locus. Thus, the DNA inversion-driven ON/OFF switch of the hsdSA1 allele in the cod locus and resulting epigenetic switch dictate the phase variation between the opaque and transparent phenotypes. Phase variation has been well documented for its importance in pneumococcal carriage and invasive infection, but its molecular basis remains unclear. Our work has discovered a novel epigenetic cause for this significant pathobiology phenomenon in S. pneumoniae. Lastly, our findings broadly represents a significant advancement in our understanding of bacterial R-M systems and their potential in shaping epigenetic and phenotypic diversity of the prokaryotic organisms because similar site-specific recombination systems widely exist in many archaeal and bacterial species.


Asunto(s)
Proteínas Bacterianas/genética , Metilación de ADN/genética , Enzimas de Restricción-Modificación del ADN/genética , Epigénesis Genética/genética , Streptococcus pneumoniae/genética , Animales , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Fenotipo , Infecciones Neumocócicas/microbiología , Reacción en Cadena de la Polimerasa
12.
Mol Syst Biol ; 13(5): 931, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28490437

RESUMEN

Genome-wide screens have discovered a large set of essential genes in the opportunistic human pathogen Streptococcus pneumoniae However, the functions of many essential genes are still unknown, hampering vaccine development and drug discovery. Based on results from transposon sequencing (Tn-seq), we refined the list of essential genes in S. pneumoniae serotype 2 strain D39. Next, we created a knockdown library targeting 348 potentially essential genes by CRISPR interference (CRISPRi) and show a growth phenotype for 254 of them (73%). Using high-content microscopy screening, we searched for essential genes of unknown function with clear phenotypes in cell morphology upon CRISPRi-based depletion. We show that SPD_1416 and SPD_1417 (renamed to MurT and GatD, respectively) are essential for peptidoglycan synthesis, and that SPD_1198 and SPD_1197 (renamed to TarP and TarQ, respectively) are responsible for the polymerization of teichoic acid (TA) precursors. This knowledge enabled us to reconstruct the unique pneumococcal TA biosynthetic pathway. CRISPRi was also employed to unravel the role of the essential Clp-proteolytic system in regulation of competence development, and we show that ClpX is the essential ATPase responsible for ClpP-dependent repression of competence. The CRISPRi library provides a valuable tool for characterization of pneumococcal genes and pathways and revealed several promising antibiotic targets.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulación Bacteriana de la Expresión Génica , Genes Esenciales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Streptococcus pneumoniae/genética , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/genética , Endopeptidasa Clp/genética , Biblioteca de Genes , Redes Reguladoras de Genes , Genes Bacterianos , Peptidoglicano/biosíntesis , Peptidoglicano/genética , Ácidos Teicoicos/biosíntesis , Ácidos Teicoicos/genética
13.
J Bacteriol ; 199(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28484041

RESUMEN

Reversible or phenotypic tolerance to antibiotics within microbial populations has been implicated in treatment failure of chronic infections and development of persister cells. However, the molecular mechanisms regulating phenotypic drug tolerance are largely unknown. In this study, we identified a four-gene operon in Streptococcus pneumoniae that contributes to phenotypic tolerance to vancomycin (ptv). RNA sequencing, quantiative reverse transcriptase PCR, and transcriptional luciferase reporter experiments revealed that transcription of the ptv operon (consisting of ptvR, ptvA, ptvB, and ptvC) is induced by exposure to vancomycin. Further investigation showed that transcription of the ptv operon is repressed by PtvR, a PadR family repressor. Transcriptional induction of the ptv operon by vancomycin was achieved by transcriptional derepression of this locus, which was mediated by PtvR. Importantly, fully derepressing ptvABC by deleting ptvR or overexpressing the ptv operon with an exogenous promoter significantly enhanced vancomycin tolerance. Gene deletion analysis revealed that PtvA, PtvB, and PtvC are all required for the PtvR-regulated phenotypic tolerance to vancomycin. Finally, the results of an electrophoretic mobility shift assay with recombinant PtvR showed that PtvR represses the transcription of the ptv operon by binding to two palindromic sequences within the ptv promoter. Together, the ptv locus represents an inducible system in S. pneumoniae in response to stressful conditions, including those caused by antibiotics.IMPORTANCE Reversible or phenotypic tolerance to antibiotics within microbial populations is associated with treatment failure of bacterial diseases, but the underlying mechanisms regulating phenotypic drug tolerance remain obscure. This study reports our finding of a multigene locus that contributes to inducible tolerance to vancomycin in Streptococcus pneumoniae, an important opportunistic human pathogen. The vancomycin tolerance phenotype depends on the PtvR transcriptional repressor and three predicted membrane-associated proteins encoded by the ptv locus. This represents the first example of a gene locus in S. pneumoniae that is responsible for antibiotic tolerance and has important implications for further understanding bacterial responses and phenotypic tolerance to antibiotic treatment in this and other pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Streptococcus pneumoniae/efectos de los fármacos , Factores de Transcripción/metabolismo , Vancomicina/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Factores de Transcripción/genética
15.
Angew Chem Int Ed Engl ; 56(31): 9217-9221, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28618154

RESUMEN

The first catalytic enantioselective asymmetric aza-pinacol rearrangement is reported. The reactions are catalyzed by a chiral phosphoric acid and proceed via a highly organized transition state involving a cyclic aza-ortho-xylylene intermediate to afford the indoline structures with good to excellent enantioselectivity. The synthetic utility of this method is demonstrated by the asymmetric synthesis of a key intermediate to the natural product minfiensine and the identification of a chiral lead compound to repress antibiotic resistance.

16.
Infect Immun ; 84(6): 1887-1901, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27068094

RESUMEN

Natural genetic transformation of Streptococcus pneumoniae, an important human pathogen, mediates horizontal gene transfer for the development of drug resistance, modulation of carriage and virulence traits, and evasion of host immunity. Transformation frequency differs greatly among pneumococcal clinical isolates, but the molecular basis and biological importance of this interstrain variability remain unclear. In this study, we characterized the transformation frequency and other associated phenotypes of 208 S. pneumoniae clinical isolates representing at least 30 serotypes. While the vast majority of these isolates (94.7%) were transformable, the transformation frequency differed by up to 5 orders of magnitude between the least and most transformable isolates. The strain-to-strain differences in transformation frequency were observed among many isolates producing the same capsule types, indicating no general association between transformation frequency and serotype. However, a statistically significant association was observed between the levels of transformation and colonization fitness/virulence in the hypertransformable isolates. Although nontransformable mutants of all the selected hypertransformable isolates were significantly attenuated in colonization fitness and virulence in mouse infection models, such mutants of the strains with relatively low transformability had no or marginal fitness phenotypes under the same experimental settings. This finding strongly suggests that the pneumococci with high transformation capability are "addicted" to a "hypertransformable" state for optimal fitness in the human host. This work has thus provided an intriguing hint for further investigation into how the competence system impacts the fitness, virulence, and other transformation-associated traits of this important human pathogen.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/inmunología , Evasión Inmune/genética , Neumonía Neumocócica/inmunología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidad , Transformación Bacteriana/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Aptitud Genética , Heterogeneidad Genética , Humanos , Ratones , Ratones Endogámicos BALB C , Nasofaringe/inmunología , Nasofaringe/microbiología , Fenotipo , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/patología , Serogrupo , Streptococcus pneumoniae/inmunología , Virulencia
17.
Infect Immun ; 84(5): 1387-1402, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26902724

RESUMEN

Francisella tularensis is the causative agent of tularemia and a category A potential agent of bioterrorism, but the pathogenic mechanisms of F. tularensis are largely unknown. Our previous transposon mutagenesis screen identified 95 lung infectivity-associated F. tularensis genes, including those encoding the Lon and ClpP proteases. The present study validates the importance of Lon and ClpP in intramacrophage growth and infection of the mammalian host by using unmarked deletion mutants of the F. tularensis live vaccine strain (LVS). Further experiments revealed that lon and clpP are also required for F. tularensis tolerance to stressful conditions. A quantitative proteomic comparison between heat-stressed LVS and the isogenic Lon-deficient mutant identified 29 putative Lon substrate proteins. The follow-up protein degradation experiments identified five substrates of the F. tularensis Lon protease (FTL578, FTL663, FTL1217, FTL1228, and FTL1957). FTL578 (ornithine cyclodeaminase), FTL663 (heat shock protein), and FTL1228 (iron-sulfur activator complex subunit SufD) have been previously described as virulence-associated factors in F. tularensis Identification of these Lon substrates has thus provided important clues for further understanding of the F. tularensis stress response and pathogenesis. The high-throughput approach developed in this study can be used for systematic identification of the Lon substrates in other prokaryotic and eukaryotic organisms.


Asunto(s)
Endopeptidasa Clp/metabolismo , Francisella tularensis/enzimología , Francisella tularensis/fisiología , Proteasa La/metabolismo , Estrés Fisiológico , Tularemia/microbiología , Factores de Virulencia/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Endopeptidasa Clp/genética , Femenino , Francisella tularensis/genética , Eliminación de Gen , Sitios Genéticos , Humanos , Macrófagos/microbiología , Ratones Endogámicos BALB C , Proteasa La/genética , Tularemia/patología , Factores de Virulencia/genética
18.
PLoS Pathog ; 10(6): e1004169, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24901708

RESUMEN

Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a ß-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus.


Asunto(s)
Adhesinas Bacterianas/química , Adhesión Bacteriana , Interacciones Huésped-Patógeno , Modelos Moleculares , Mucosa Respiratoria/microbiología , Staphylococcus aureus/fisiología , Factores de Virulencia/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Sitios de Unión , Línea Celular , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mucosa Respiratoria/metabolismo , Staphylococcus aureus/patogenicidad , Trisacáridos/química , Trisacáridos/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
19.
Org Biomol Chem ; 14(1): 198-205, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26496813

RESUMEN

A modular synthesis of merochlorins A and B, two naturally occurring antibiotics, has been achieved concisely from readily available building blocks in 4-6 steps. The key steps include the bio-inspired tandem phenol oxidative dearomatization/[5 + 2] and [3 + 2] cycloadditions to construct the tricyclic cores of the targets, and the intermolecular Diels-Alder reaction followed by dehydrogenative aromatization to assemble the remaining aromatic units. The antibacterial activities of merochlorins A, B and some advanced synthetic intermediates were also evaluated, which provided valuable information on the structure-activity relationship (SAR) of this class of new antibiotics.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Sesterterpenos/química , Sesterterpenos/farmacología , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Enterococcus faecalis/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Sesterterpenos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Relación Estructura-Actividad
20.
Biochem J ; 465(2): 325-35, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25330773

RESUMEN

Many human pathogens have strict host specificity, which affects not only their epidemiology but also the development of animal models and vaccines. Complement Factor H (FH) is recruited to pneumococcal cell surface in a human-specific manner via the N-terminal domain of the pneumococcal protein virulence factor choline-binding protein A (CbpAN). FH recruitment enables Streptococcus pneumoniae to evade surveillance by human complement system and contributes to pneumococcal host specificity. The molecular determinants of host specificity of complement evasion are unknown. In the present study, we show that a single human FH (hFH) domain is sufficient for tight binding of CbpAN, present the crystal structure of the complex and identify the critical structural determinants for host-specific FH recruitment. The results offer new approaches to the development of better animal models for pneumococcal infection and redesign of the virulence factor for pneumococcal vaccine development and reveal how FH recruitment can serve as a mechanism for both pneumococcal complement evasion and adherence.


Asunto(s)
Proteínas Bacterianas/química , Factor H de Complemento/química , Complejos Multiproteicos/química , Streptococcus pneumoniae/química , Factores de Virulencia/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA