Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 81(24): 5082-5098.e11, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34699746

RESUMEN

Cell state changes are associated with proteome remodeling to serve newly emergent cell functions. Here, we show that NGN2-driven conversion of human embryonic stem cells to induced neurons (iNeurons) is associated with increased PINK1-independent mitophagic flux that is temporally correlated with metabolic reprogramming to support oxidative phosphorylation. Global multiplex proteomics during neurogenesis revealed large-scale remodeling of functional modules linked with pluripotency, mitochondrial metabolism, and proteostasis. Differentiation-dependent mitophagic flux required BNIP3L and its LC3-interacting region (LIR) motif, and BNIP3L also promoted mitophagy in dopaminergic neurons. Proteomic analysis of ATG12-/- iNeurons revealed accumulation of endoplasmic reticulum, Golgi, and mitochondria during differentiation, indicative of widespread organelle remodeling during neurogenesis. This work reveals broad organelle remodeling of membrane-bound organelles during NGN2-driven neurogenesis via autophagy, identifies BNIP3L's central role in programmed mitophagic flux, and provides a proteomic resource for elucidating how organelle remodeling and autophagy alter the proteome during changes in cell state.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Mitofagia , Células-Madre Neurales/enzimología , Neurogénesis , Neuronas/enzimología , Proteoma , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Línea Celular , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteostasis , Proteínas Proto-Oncogénicas/genética , Factores de Tiempo , Proteínas Supresoras de Tumor/genética
2.
Cell ; 153(5): 1134-48, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23664764

RESUMEN

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/metabolismo , Epigenómica , Regulación del Desarrollo de la Expresión Génica , Animales , Diferenciación Celular , Cromatina/metabolismo , Islas de CpG , Células Madre Embrionarias/citología , Histonas/metabolismo , Humanos , Metilación , Neoplasias/genética , Regiones Promotoras Genéticas , Pez Cebra/embriología
3.
Nature ; 604(7904): 167-174, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355014

RESUMEN

Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are histone-modifying and -binding complexes that mediate the formation of facultative heterochromatin and are required for silencing of developmental genes and maintenance of cell fate1-3. Multiple pathways of RNA decay work together to establish and maintain heterochromatin in fission yeast, including a recently identified role for a conserved RNA-degradation complex known as the rixosome or RIX1 complex4-6. Whether RNA degradation also has a role in the stability of mammalian heterochromatin remains unknown. Here we show that the rixosome contributes to silencing of many Polycomb targets in human cells. The rixosome associates with human PRC complexes and is enriched at promoters of Polycomb target genes. Depletion of either the rixosome or Polycomb results in accumulation of paused and elongating RNA polymerase at Polycomb target genes. We identify point mutations in the RING1B subunit of PRC1 that disrupt the interaction between PRC1 and the rixosome and result in diminished silencing, suggesting that direct recruitment of the rixosome to chromatin is required for silencing. Finally, we show that the RNA endonuclease and kinase activities of the rixosome and the downstream XRN2 exoribonuclease, which degrades RNAs with 5' monophosphate groups generated by the rixosome, are required for silencing. Our findings suggest that rixosomal degradation of nascent RNA is conserved from fission yeast to human, with a primary role in RNA degradation at facultative heterochromatin in human cells.


Asunto(s)
Silenciador del Gen , Heterocromatina , Complejo Represivo Polycomb 1 , Estabilidad del ARN , Exorribonucleasas/genética , Heterocromatina/genética , Humanos , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Schizosaccharomyces/genética
4.
Mol Cell ; 77(5): 1124-1142.e10, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142685

RESUMEN

The ubiquitin ligase Parkin, protein kinase PINK1, USP30 deubiquitylase, and p97 segregase function together to regulate turnover of damaged mitochondria via mitophagy, but our mechanistic understanding in neurons is limited. Here, we combine induced neurons (iNeurons) derived from embryonic stem cells with quantitative proteomics to reveal the dynamics and specificity of Parkin-dependent ubiquitylation under endogenous expression conditions. Targets showing elevated ubiquitylation in USP30-/- iNeurons are concentrated in components of the mitochondrial translocon, and the ubiquitylation kinetics of the vast majority of Parkin targets are unaffected, correlating with a modest kinetic acceleration in accumulation of pS65-Ub and mitophagic flux upon mitochondrial depolarization without USP30. Basally, ubiquitylated translocon import substrates accumulate, suggesting a quality control function for USP30. p97 was dispensable for Parkin ligase activity in iNeurons. This work provides an unprecedented quantitative landscape of the Parkin-modified ubiquitylome in iNeurons and reveals the underlying specificity of central regulatory elements in the pathway.


Asunto(s)
Células Madre Embrionarias Humanas/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Mitofagia , Células-Madre Neurales/enzimología , Neurogénesis , Neuronas/enzimología , Tioléster Hidrolasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células HeLa , Células Madre Embrionarias Humanas/patología , Humanos , Cinética , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Células-Madre Neurales/patología , Neuronas/patología , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica , Transducción de Señal , Tioléster Hidrolasas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
5.
Hum Mol Genet ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776958

RESUMEN

The ubiquitin-proteasome system mediates the degradation of a wide variety of proteins. Proteasome dysfunction is associated with neurodegenerative diseases and neurodevelopmental disorders in humans. Here we identified mutations in PSMC5, an AAA ATPase subunit of the proteasome 19S regulatory particle, in individuals with neurodevelopmental disorders, which were initially considered as variants of unknown significance. We have now found heterozygotes with the following mutations: P320R (6 individuals), R325W, Q160A, and one nonsense mutation at Q69. We focused on understanding the functional consequence of PSMC5 insufficiency and the P320R mutation in cells and found that both impair proteasome function and activate apoptosis. Interestingly, the P320R mutation impairs proteasome function by weakening the association between the 19S regulatory particle and the 20S core particle. Our study supports that proteasome dysfunction is the pathogenic cause of neurodevelopmental disorders in individuals carrying PSMC5 variants.

6.
Mol Cell ; 70(2): 211-227.e8, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656925

RESUMEN

Flux through kinase and ubiquitin-driven signaling systems depends on the modification kinetics, stoichiometry, primary site specificity, and target abundance within the pathway, yet we rarely understand these parameters and their spatial organization within cells. Here we develop temporal digital snapshots of ubiquitin signaling on the mitochondrial outer membrane in embryonic stem cell-derived neurons, and we model HeLa cell systems upon activation of the PINK1 kinase and PARKIN ubiquitin ligase by proteomic counting of ubiquitylation and phosphorylation events. We define the kinetics and site specificity of PARKIN-dependent target ubiquitylation, and we demonstrate the power of this approach to quantify pathway modulators and to mechanistically define the role of PARKIN UBL phosphorylation in pathway activation in induced neurons. Finally, through modulation of pS65-Ub on mitochondria, we demonstrate that Ub hyper-phosphorylation is inhibitory to mitophagy receptor recruitment, indicating that pS65-Ub stoichiometry in vivo is optimized to coordinate PARKIN recruitment via pS65-Ub and mitophagy receptors via unphosphorylated chains.


Asunto(s)
Células Madre Embrionarias Humanas/enzimología , Membranas Mitocondriales/enzimología , Células-Madre Neurales/enzimología , Neurogénesis , Neuronas/enzimología , Proteómica/métodos , Ubiquitina-Proteína Ligasas/metabolismo , Activación Enzimática , Células HeLa , Humanos , Cinética , Mitofagia , Fenotipo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(39): e2305756120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722062

RESUMEN

Mutations in RNA/DNA-binding proteins cause amyotrophic lateral sclerosis (ALS), but the underlying disease mechanisms remain unclear. Here, we report that a set of ALS-associated proteins, namely FUS, EWSR1, TAF15, and MATR3, impact the expression of genes encoding the major histocompatibility complex II (MHC II) antigen presentation pathway. Both subunits of the MHC II heterodimer, HLA-DR, are down-regulated in ALS gene knockouts/knockdown in HeLa and human microglial cells, due to loss of the MHC II transcription factor CIITA. Importantly, hematopoietic progenitor cells (HPCs) derived from human embryonic stem cells bearing the FUSR495X mutation and HPCs derived from C9ORF72 ALS patient induced pluripotent stem cells also exhibit disrupted MHC II expression. Given that HPCs give rise to numerous immune cells, our data raise the possibility that loss of the MHC II pathway results in global failure of the immune system to protect motor neurons from damage that leads to ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Presentación de Antígeno/genética , Genes MHC Clase II , Complejo Mayor de Histocompatibilidad , Neuronas Motoras , Proteínas de Unión al ARN/genética , Proteínas Asociadas a Matriz Nuclear
8.
EMBO Rep ; 24(8): e56399, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37334901

RESUMEN

The protein kinase PINK1 and ubiquitin ligase Parkin promote removal of damaged mitochondria via a feed-forward mechanism involving ubiquitin (Ub) phosphorylation (pUb), Parkin activation, and ubiquitylation of mitochondrial outer membrane proteins to support the recruitment of mitophagy receptors. The ubiquitin ligase substrate receptor FBXO7/PARK15 is mutated in an early-onset parkinsonian-pyramidal syndrome. Previous studies have proposed a role for FBXO7 in promoting Parkin-dependent mitophagy. Here, we systematically examine the involvement of FBXO7 in depolarization and mt UPR-dependent mitophagy in the well-established HeLa and induced-neurons cell systems. We find that FBXO7-/- cells have no demonstrable defect in: (i) kinetics of pUb accumulation, (ii) pUb puncta on mitochondria by super-resolution imaging, (iii) recruitment of Parkin and autophagy machinery to damaged mitochondria, (iv) mitophagic flux, and (v) mitochondrial clearance as quantified by global proteomics. Moreover, global proteomics of neurogenesis in the absence of FBXO7 reveals no obvious alterations in mitochondria or other organelles. These results argue against a general role for FBXO7 in Parkin-dependent mitophagy and point to the need for additional studies to define how FBXO7 mutations promote parkinsonian-pyramidal syndrome.


Asunto(s)
Proteínas F-Box , Mitofagia , Humanos , Células HeLa , Mitofagia/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
9.
Dev Cell ; 59(2): 244-261.e6, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38154460

RESUMEN

WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.


Asunto(s)
Glipicanos , Proteínas Wnt , Proteínas Wnt/metabolismo , Glipicanos/metabolismo , Vía de Señalización Wnt , Desarrollo Embrionario , Lípidos , Receptores Frizzled/química , Receptores Frizzled/metabolismo
10.
Stem Cells ; 30(3): 461-70, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22213079

RESUMEN

Unlike mouse embryonic stem cells (ESCs), which are closely related to the inner cell mass, human ESCs appear to be more closely related to the later primitive ectoderm. For example, human ESCs and primitive ectoderm share a common epithelial morphology, growth factor requirements, and the potential to differentiate to all three embryonic germ layers. However, it has previously been shown that human ESCs can also differentiate to cells expressing markers of trophoblast, an extraembryonic lineage formed before the formation of primitive ectoderm. Here, we show that phorbol ester 12-O-tetradecanoylphorbol 13-acetate causes human ESCs to undergo an epithelial mesenchymal transition and to differentiate into cells expressing markers of parietal endoderm, another extraembryonic lineage. We further confirmed that this differentiation is through the activation of protein kinase C (PKC) pathway and demonstrated that a particular PKC subtype, PKC-δ, is most responsible for this transition.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/fisiología , Endodermo/citología , Proteína Quinasa C/fisiología , Antígenos de Diferenciación/metabolismo , Células Cultivadas , Regulación hacia Abajo , Células Madre Embrionarias/metabolismo , Activación Enzimática , Activadores de Enzimas/farmacología , Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Humanos , Isoenzimas/metabolismo , Isoenzimas/fisiología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteína Quinasa C/metabolismo , Acetato de Tetradecanoilforbol/farmacología
11.
Nat Cell Biol ; 25(8): 1101-1110, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37443287

RESUMEN

Lipid droplets (LDs) are crucial organelles for energy storage and lipid homeostasis. Autophagy of LDs is an important pathway for their catabolism, but the molecular mechanisms mediating LD degradation by selective autophagy (lipophagy) are unknown. Here we identify spartin as a receptor localizing to LDs and interacting with core autophagy machinery, and we show that spartin is required to deliver LDs to lysosomes for triglyceride mobilization. Mutations in SPART (encoding spartin) lead to Troyer syndrome, a form of complex hereditary spastic paraplegia1. Interfering with spartin function in cultured human neurons or murine brain neurons leads to LD and triglyceride accumulation. Our identification of spartin as a lipophagy receptor, thus, suggests that impaired LD turnover contributes to Troyer syndrome development.


Asunto(s)
Paraplejía Espástica Hereditaria , Ratones , Humanos , Animales , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Portadoras/metabolismo , Autofagia , Triglicéridos/metabolismo , Metabolismo de los Lípidos/fisiología
12.
Cell Rep ; 42(4): 112339, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37014752

RESUMEN

The rixosome and PRC1 silencing complexes are associated with deSUMOylating and deubiquitinating enzymes, SENP3 and USP7, respectively. How deSUMOylation and deubiquitylation contribute to rixosome- and Polycomb-mediated silencing is not fully understood. Here, we show that the enzymatic activities of SENP3 and USP7 are required for silencing of Polycomb target genes. SENP3 deSUMOylates several rixosome subunits, and this activity is required for association of the rixosome with PRC1. USP7 associates with canonical PRC1 (cPRC1) and deubiquitinates the chromodomain subunits CBX2 and CBX4, and inhibition of USP activity results in disassembly of cPRC1. Finally, both SENP3 and USP7 are required for Polycomb- and rixosome-dependent silencing at an ectopic reporter locus. These findings demonstrate that SUMOylation and ubiquitination regulate the assembly and activities of the rixosome and Polycomb complexes and raise the possibility that these modifications provide regulatory mechanisms that may be utilized during development or in response to environmental challenges.


Asunto(s)
Núcleo Celular , Complejo Represivo Polycomb 1 , Peptidasa Específica de Ubiquitina 7/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Ubiquitinación , Núcleo Celular/metabolismo
13.
J Virol ; 83(2): 927-39, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19004956

RESUMEN

Satellite RNAs usually lack substantial homology with their helper viruses. The 356-nucleotide satC of Turnip crinkle virus (TCV) is unusual in that its 3'-half shares high sequence similarity with the TCV 3' end. Computer modeling, structure probing, and/or compensatory mutagenesis identified four hairpins and three pseudoknots in this TCV region that participate in replication and/or translation. Two hairpins and two pseudoknots have been confirmed as important for satC replication. One portion of the related 3' end of satC that remains poorly characterized corresponds to juxtaposed TCV hairpins H4a and H4b and pseudoknot psi(3), which are required for the TCV-specific requirement of translation (V. A. Stupina et al., RNA 14:2379-2393, 2008). Replacement of satC H4a with randomized sequence and scoring for fitness in plants by in vivo genetic selection (SELEX) resulted in winning sequences that contain an H4a-like stem-loop, which can have additional upstream sequence composing a portion of the stem. SELEX of the combined H4a and H4b region in satC generated three distinct groups of winning sequences. One group models into two stem-loops similar to H4a and H4b of TCV. However, the selected sequences in the other two groups model into single hairpins. Evolution of these single-hairpin SELEX winners in plants resulted in satC that can accumulate to wild-type (wt) levels in protoplasts but remain less fit in planta when competed against wt satC. These data indicate that two highly distinct RNA conformations in the H4a and H4b region can mediate satC fitness in protoplasts.


Asunto(s)
Evolución Molecular , ARN Viral/genética , Selección Genética , Adaptación Biológica , Arabidopsis , Secuencia de Bases , Carmovirus/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Protoplastos/virología , Recombinación Genética
14.
Stem Cell Reports ; 6(2): 243-56, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26805448

RESUMEN

Advances in the scalable production of blood cells from induced pluripotent stem cells (iPSCs) open prospects for the clinical translation of de novo generated blood products, and evoke the need for preclinical evaluation of their efficacy, safety, and immunogenicity in large animal models. Due to substantial similarities with humans, the outcomes of cellular therapies in non-human primate (NHP) models can be readily extrapolated to a clinical setting. However, the use of this model is hampered by relatively low efficiency of blood generation and lack of lymphoid potential in NHP-iPSC differentiation cultures. Here, we generated transgene-free iPSCs from different NHP species and showed the efficient induction of mesoderm, myeloid, and lymphoid cells from these iPSCs using a GSK3ß inhibitor. Overall, our studies enable scalable production of hematopoietic progenitors from NHP-iPSCs, and lay the foundation for preclinical testing of iPSC-based therapies for blood and immune system diseases in an NHP model.


Asunto(s)
Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Hematopoyesis/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Linfocitos/citología , Células Mieloides/citología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular , Linaje de la Célula/efectos de los fármacos , Técnicas de Cocultivo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Linfocitos/efectos de los fármacos , Mesodermo/citología , Ratones , Células Mieloides/efectos de los fármacos , Primates
15.
Virology ; 351(2): 476-88, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16682064

RESUMEN

Turnip crinkle virus (TCV) and its 356-nt satellite RNA satC share 151 nt of 3'-terminal sequence, which contain 8 positional differences and are predicted to fold into virtually identical structures, including a series of four phylogenetically inferred hairpins. SatC and TCV containing reciprocal exchanges of this region accumulate to only 15% or 1% of wild-type levels, respectively. Step-wise conversion of satC and TCV 3'-terminal sequences into the counterpart's sequence revealed the importance of having the cognate core promoter (Pr), which is composed of a single hairpin that differs in both sequence and stability, and an adjacent short 3'-terminal segment. The negative impact of the more stable TCV Pr on satC could not be attributed to lack of formation of a known tertiary interaction involving the 3'-terminal bases, nor an effect of coat protein, which binds specifically to TCV-like Pr and not the satC Pr. The satC Pr was a substantially better promoter than the TCV Pr when assayed in vitro using purified recombinant TCV RdRp, either in the context of satC or when assayed downstream of non-TCV-related sequence. Poor activity of the TCV Pr in vitro occurred despite solution structure probing indicating that its conformation in the context of satC is similar to the active form of the satC Pr, which is thought to form following a required conformational switch. These results suggest that evolution of satC following its initial formation generated a Pr that can function more efficiently in the absence of additional TCV sequence that may be required for full functionality of the TCV Pr.


Asunto(s)
Evolución Molecular , Virus de Plantas/genética , Virus de Plantas/fisiología , ARN Viral/biosíntesis , Replicación Viral , Secuencia de Bases , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Regulación Viral de la Expresión Génica , Regiones Promotoras Genéticas , Unión Proteica , ARN Viral/genética
16.
RNA ; 12(1): 147-62, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16301603

RESUMEN

Synthesis of wild-type levels of turnip crinkle virus (TCV)-associated satC complementary strands by purified, recombinant TCV RNA-dependent RNA polymerase (RdRp) in vitro was previously determined to require 3' end pairing to the large symmetrical internal loop of a phylogenetically conserved hairpin (H5) located upstream from the hairpin core promoter. However, wild-type satC transcripts, which fold into a single detectable conformation in vitro as determined by temperature-gradient gel electrophoresis, do not contain either the phylogenetically inferred H5 structure or the 3' end/H5 interaction. This implies that conformational changes are required to produce the phylogenetically inferred H5 structure for its pairing with the 3' end, which takes place subsequent to the initial conformation assumed by the RNA and prior to transcription initiation. The DR region, located 140 nucleotides upstream from the 3' end and previously determined to be important for transcription in vitro and replication in vivo, is proposed to have a role in the conformational switch, since stabilizing the phylogenetically inferred H5 structure decreases the negative effects of a DR mutation in vivo. In addition, high levels of aberrant transcription correlate with a specific conformational change in the Pr while maintaining the same conformation of the 3' terminus. These results suggest that a series of events that promote conformational changes is needed to expose the 3' terminus to the RdRp for accurate synthesis of wild-type levels of complementary strands in vitro.


Asunto(s)
Carmovirus/genética , Regulación Viral de la Expresión Génica , Conformación de Ácido Nucleico/efectos de los fármacos , Replicación Viral/genética , Secuencia de Bases , Sitios de Unión/genética , Carmovirus/metabolismo , Magnesio/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , ARN Viral/genética , ARN Viral/fisiología , Replicón , Transcripción Genética
17.
J Virol ; 80(18): 9181-91, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16940529

RESUMEN

RNA can adopt different conformations in response to changes in the metabolic status of cells, which can regulate processes such as transcription, translation, and RNA cleavage. We previously proposed that an RNA conformational switch in an untranslated satellite RNA (satC) of Turnip crinkle virus (TCV) regulates initiation of minus-strand synthesis (G. Zhang, J. Zhang, A. T. George, T. Baumstark, and A. E. Simon, RNA 12:147-162, 2006). This model was based on the lack of phylogenetically inferred hairpins or a known pseudoknot in the "preactive" structure assumed by satC transcripts in vitro. We now provide evidence that a second pseudoknot (Psi(2)), whose disruption reduces satC accumulation in vivo and enhances transcription by the TCV RNA-dependent RNA polymerase in vitro, stabilizes the preactive satC structure. Alteration of either Psi(2) partner caused nearly identical structural changes, including single-stranded-specific cleavages in the pseudoknot sequences and strong cleavages in a distal element previously proposed to mediate the conformational switch. These results indicate that the preactive structure identified in vitro has biological relevance in vivo and support a requirement for this alternative structure and a conformational switch in high-level accumulation of satC in vivo.


Asunto(s)
Conformación de Ácido Nucleico , Virus de Plantas/genética , ARN Viral/química , Secuencia de Bases , Regulación Viral de la Expresión Génica , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , ARN/química , Satélite de ARN/química , ARN Viral/genética , Replicación Viral , Virus/genética
18.
Virology ; 333(2): 301-15, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15721364

RESUMEN

Efficient replication of plus-strand RNA viruses requires a 3' proximal core promoter and an increasingly diverse inventory of supporting elements such as enhancers, repressors, and 5' terminal sequences. While core promoters have been well characterized, much less is known about structure-functional relationships of these supporting elements. Members of the genus Carmovirus family Tombusviridae contain a hairpin (H5) proximal to the core promoter that functions as a repressor of minus-strand synthesis in vitro through an interaction between its large symmetrical internal loop (LSL) and 3' terminal bases. Turnip crinkle virus satellite RNA satC with the H5 of carmovirus Japanese iris necrosis virus or Cardamine chlorotic fleck virus (CCFV) did not accumulate to detectable levels even though 3' end base-pairing would be maintained. Replacement of portions of the satC H5 with analogous portions from CCFV revealed that the cognate LSL and lower stem were of greater importance for satC accumulation than the upper stem. In vivo selex of the H5 upper stem and terminal GNRA tetraloop revealed considerable plasticity in the upper stem, including the presence of three- to six-base terminal loops, allowed for H5 function. In vivo selex of the lower stem revealed that both a stable stem and specific base pairs contributed to satC fitness. Surprisingly, mutations in H5 had a disproportionate effect on plus-strand accumulation that was unrelated to the stability of the mutant plus-strands. In addition, fitness to accumulate in plants did not always correlate with enhanced ability to accumulate in protoplasts, suggesting that H5 may be multifunctional.


Asunto(s)
Carmovirus/genética , Carmovirus/fisiología , ARN Viral/genética , Replicación Viral/genética , Secuencia de Bases , Genes Virales , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , ARN Viral/biosíntesis , ARN Viral/química
19.
Virology ; 326(1): 90-102, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15262498

RESUMEN

Nearly all members of the Carmovirus genus contain a structurally conserved 3' proximal hairpin (H5) with a large internal symmetrical loop (LSL). H5 has been identified as a repressor of minus-strand synthesis in a satellite RNA (satC), which shares partial sequence similarity with its helper virus Turnip crinkle virus (TCV). Repression was due to sequestration of the 3' end mediated by base pairing between 3' end sequence and the 3' side of the LSL (G. Zhang, J. Zhang and A. E. Simon, J. Virol., in press). Single site mutational analysis and in vivo genetic selection (SELEX) of the 14 base satC H5 LSL indicated specific sequences in the middle and upper regions on both sides of the LSL are necessary for robust satC accumulation in plants and protoplasts. Fitness of wild-type satC and satC LSL mutants to accumulate in plants, however, did not necessarily correlate with the ability of these RNAs to replicate in protoplasts. This suggests that the LSL might be involved in processes in addition to repression of minus-strand synthesis.


Asunto(s)
Carmovirus/genética , Satélite de ARN/genética , Regiones no Traducidas 3'/genética , Arabidopsis , Secuencia de Bases , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Protoplastos/virología , Replicación Viral/genética
20.
J Virol ; 78(14): 7619-33, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15220437

RESUMEN

Plus-strand viral RNAs contain sequences and structural elements that allow cognate RNA-dependent RNA polymerases (RdRp) to correctly initiate and transcribe asymmetric levels of plus and minus strands during RNA replication. cis-acting sequences involved in minus-strand synthesis, including promoters, enhancers, and, recently, transcriptional repressors (J. Pogany, M. R. Fabian, K. A. White, and P. D. Nagy, EMBO J. 22:5602-5611, 2003), have been identified for many viruses. A second example of a transcriptional repressor has been discovered in satC, a replicon associated with turnip crinkle virus. satC hairpin 5 (H5), located proximal to the core hairpin promoter, contains a large symmetrical internal loop (LSL) with sequence complementary to 3'-terminal bases. Deletion of satC 3'-terminal bases or alteration of the putative interacting bases enhanced transcription in vitro, while compensatory exchanges between the LSL and 3' end restored near-normal transcription. Solution structure analysis indicated that substantial alteration of the satC H5 region occurs when the three 3'-terminal cytidylates are deleted. These results indicate that H5 functions to suppress synthesis of minus strands by sequestering the 3' terminus from the RdRp. Alteration of a second sequence strongly repressed transcription in vitro and accumulation in vivo, suggesting that this sequence may function as a derepressor to free the 3' end from interaction with H5. Hairpins with similar sequence and/or structural features that contain sequence complementary to 3'-terminal bases, as well as sequences that could function as derepressors, are located in similar regions in other carmoviruses, suggesting a general mechanism for controlling minus-strand synthesis in the genus.


Asunto(s)
Brassica napus/virología , Carmovirus/genética , Regulación Viral de la Expresión Génica , ARN Viral/biosíntesis , Replicón , Secuencia de Bases , Carmovirus/metabolismo , Datos de Secuencia Molecular , Virus de Plantas/genética , Virus de Plantas/metabolismo , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA