Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Langmuir ; 40(26): 13648-13656, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952282

RESUMEN

Controlling the spontaneous directional transport of droplets plays an important role in the application of microchemical reactions and microdroplet detection. Although the relevant technologies have been widely studied, the existing spontaneous droplet transport strategies still face problems of complex structure, single function, and poor flexibility. Inspired by the spontaneous droplet transport strategy in nature, an asymmetric wettability surface with microcone channels (AWS-MC) is prepared on a flexible fabric by combining surface modification and femtosecond laser manufacturing technology. On this surface, the capillary force and Laplace pressure induced by the wettability gradient and the geometric structure gradient drive the droplet transport from the hydrophobic surface to the hydrophilic surface. Notably, droplets in adjacent hydrophilic regions do not exchange substances even if the gap in the hydrophilic region is only 1 mm, which provides an ideal platform for numerous detections by a single drop. The droplet transport strategy does not require external energy and can adapt to the manipulation of various droplet types. Application of this surface in the blood of organisms is demonstrated. This work provides an effective method for microdroplet-directed self-transport and microdroplet detection.


Asunto(s)
Humectabilidad , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Animales , Propiedades de Superficie
2.
Arthroscopy ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38336108

RESUMEN

PURPOSE: To investigate the accuracy and reliability of magnetic resonance imaging (MRI) in identifying and grading chondral lesions and explore the optimal imaging technique to image cartilage. METHOD: A comprehensive search was conducted on Medline, Embase, and Cochrane Library. Eligible cohort studies published before August 2022 were included. The study reports used MRI to diagnose and grade cartilage lesions, with intraoperative findings as the reference standard. Summary estimates of diagnostic performance were obtained. The reliability of MRI interpretation was summarized. Subgroup analyses were performed based on assessed imaging techniques, field strength, and joint surface. RESULTS: Forty-three trials and 3,706 patients were included in the systematic review. The overall area under curve for hierarchical summarized receiver operating characteristics was 0.91 (95% confidence interval [CI] 0.88-0.93). The pooled sensitivity for quantitative MRI, 3-dimensional MRI, and 2-dimensional MRI was 0.82 (95% CI 0.64-0.92), 0.79 (95% CI 0.74-0.83), and 0.63 (95% CI 0.51-0.73), respectively. The pooled sensitivity of 3 Tesla (3T), 1.5 Tesla (1.5T), and <1.5 Tesla MRI was 0.79 (95% CI 0.72-0.85), 0.67 (95% CI 0.60-0.74), and 0.55 (95% CI 0.39-0.71), respectively. There were differences in interobserver consistency across different studies. CONCLUSIONS: In general, MRI had high specificity in discriminating normal cartilage, but its sensitivity for identifying chondral lesions is less optimal. Further analysis showed that quantitative MRI, 3D MRI, and 3T MRI demonstrate greater sensitivity compared with 2D MRI, 1.5T MRI, and <1.5 Tesla MRI. LEVEL OF EVIDENCE: Level III, systematic review of Level II-III studies.

3.
J Magn Reson Imaging ; 57(1): 113-123, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35652452

RESUMEN

BACKGROUND: Aneurysm inflow angle has been shown to be associated with hemodynamic changes by computational fluid dynamics. However, these studies were based on single aneurysm model and were limited to side-wall aneurysms. PURPOSE: To investigate the association between inflow angle and morphology, hemodynamic, and inflammation of intracranial side-wall and bifurcation aneurysms. STUDY TYPE: Prospective. POPULATION: A total of 62 patients (aged 58.34 ± 12.39, 44 female) with 59 unruptured side-wall aneurysms and 17 unruptured bifurcation aneurysms were included. FIELD STRENGTH/SEQUENCE: A 3.0 T; 3D fast field echo sequence (TOF-MRA); free-breathing, 3D radio-frequency-spoiled, multi-shot turbo field echo sequence (4D-flow MRI); 3D black-blood T1-weighted volumetric turbo spin echo acquisition sequence (T1 -VISTA) ASSESSMENT: Two neuroradiologists assessed the inflow angle and size for intracranial aneurysms in 3D space with TOF-MRA images. The average and maximum inflow velocity (Vavg-IA , Vmax-IA ), blood flow (Flowavg-IA , Flowmax-IA ), and average wall shear stress (WSSavg-IA ) for aneurysms were assessed from 4D-flow MRI in regions of interest drawn by two neuroradiologists. The aneurysmal wall enhancement (AWE) grades between precontrast and postcontrast T1 -VISTA images were evaluated by three neuroradiologists. STATISTICAL TESTS: Kruskal-Wallis H test, χ2 test, Pearson's correlation coefficient, scatter plots and regression lines, multivariate logistic regression analysis (partial correlation r) were performed. A P < 0.05 was considered statistically significant. RESULTS: The WSSavg-IA (0.52 ± 0.34 vs. 0.27 ± 0.22) and AWE grades (1.38 ± 1.04 vs. 2.02 ± 0.68) between the two inflow angle subgroups of side-wall aneurysms were significantly different. The aneurysm size (rs  = 0.31), WSSavg-IA (rs  = -0.45), and AWE grades (rs  = 0.45) were significantly correlated with inflow angle in side-wall aneurysms. While in bifurcation aneurysms, there were no significant associations between inflow angle and size (P = 0.901), Vavg-IA (P = 0.699), Vmax-IA (P = 0.482), Flowavg-IA (P = 0.550), Flowmax-IA (P = 0.689), WSSavg-IA (P = 0.573), and AWE grades (P = 0.872). DATA CONCLUSION: A larger aneurysm size, a lower WSS and a higher AWE grade were correlated with a larger inflow angle in side-wall aneurysms. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Aneurisma Intracraneal , Humanos , Femenino , Aneurisma Intracraneal/diagnóstico por imagen , Estudios Prospectivos , Imagenología Tridimensional , Hemodinámica/fisiología , Imagen por Resonancia Magnética , Inflamación/diagnóstico por imagen
4.
Am J Physiol Endocrinol Metab ; 313(4): E413-E428, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28634175

RESUMEN

Propionate, 3-hydroxypropionate (3HP), methylcitrate, related compounds, and ammonium accumulate in body fluids of patients with disorders of propionyl-CoA metabolism, such as propionic acidemia. Although liver transplantation alleviates hyperammonemia, high concentrations of propionate, 3HP, and methylcitrate persist in body fluids. We hypothesized that conserved metabolic perturbations occurring in transplanted patients result from the simultaneous presence of propionate and 3HP in body fluids. We investigated the inter-relations of propionate and 3HP metabolism in perfused livers from normal rats using metabolomic and stable isotopic technologies. In the presence of propionate, 3HP, or both, we observed the following metabolic perturbations. First, the citric acid cycle (CAC) is overloaded but does not provide sufficient reducing equivalents to the respiratory chain to maintain the homeostasis of adenine nucleotides. Second, there is major CoA trapping in the propionyl-CoA pathway and a tripling of liver total CoA within 1 h. Third, liver proteolysis is stimulated. Fourth, propionate inhibits the conversion of 3HP to acetyl-CoA and its oxidation in the CAC. Fifth, some propionate and some 3HP are converted to nephrotoxic maleate by different processes. Our data have implications for the clinical management of propionic acidemia. They also emphasize the perturbations of the liver intermediary metabolism induced by supraphysiological, i.e., millimolar, concentrations of labeled propionate used to trace the intermediary metabolism, in particular, inhibition of CAC flux and major decreases in the [ATP]/[ADP] and [ATP]/[AMP] ratios.


Asunto(s)
Acilcoenzima A/metabolismo , Ácido Láctico/análogos & derivados , Hígado/metabolismo , Propionatos/metabolismo , Compuestos de Amonio/metabolismo , Animales , Isótopos de Carbono , Citratos/metabolismo , Ciclo del Ácido Cítrico , Ácido Láctico/metabolismo , Trasplante de Hígado , Masculino , Oxidación-Reducción , Acidemia Propiónica/metabolismo , Acidemia Propiónica/cirugía , Proteolisis , Ratas , Ratas Sprague-Dawley
5.
PLoS One ; 19(2): e0298207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330049

RESUMEN

PURPOSE: To compare the ability of diffusion parameters obtained by stretched-exponential and kurtosis models of diffusion-weighted imaging (DWI) to distinguish between patients with primary aldosteronism (PA) and healthy controls (HCs) in renal assessment. MATERIALS AND METHODS: A total of 44 participants (22 patients and 22 HCs) underwent renal MRI with an 11 b-value DWI sequence and a 3 b-value diffusion kurtosis imaging (DKI) sequence from June 2021 to April 2022. Binary logistic regression was used to construct regression models combining different diffusion parameters. Receiver-operating characteristic (ROC) curve analysis and comparisons were used to evaluate the ability of single diffusion parameters and combined diffusion models to distinguish between the two groups. RESULTS: A total of six diffusion parameters (including the cortical anomalous exponent term [α_Cortex], medullary fractional anisotropy [FA_Medulla], cortical FA [FA_Cortex], cortical axial diffusivity [Da_Cortex], medullary mean diffusivity [MD_Medulla] and medullary radial diffusivity [Dr_Medulla]) were included, and 10 regression models were studied. The area under the curve (AUC) of Dr_Medulla was 0.855, comparable to that of FA_Cortex and FA_Medulla and significantly higher than that of α_Cortex, Da_Cortex and MD_Medulla. The AUC of the Model_all parameters was 0.967, comparable to that of Model_FA (0.946) and Model_DKI (0.966) and significantly higher than that of the other models. The sensitivity and specificity of Model_all parameters were 87.2% and 95%, respectively. CONCLUSION: The Model_all parameters, Model_FA and Model_DKI were valid for differentiating between PA patients and HCs with similar differentiation efficacy and were superior to single diffusion parameters and other models.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Hiperaldosteronismo , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Riñón/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Hiperaldosteronismo/diagnóstico por imagen
6.
MedComm (2020) ; 4(4): e335, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560755

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is increasingly used to treat neuropsychiatric disorders. Inhibitory and excitatory regimens have been both adopted but the exact mechanism of action remains unclear, and investigating their differential effects on laminar diffusion profiles of neocortex may add important evidence. Twenty healthy participants were randomly assigned to receive a low-frequency/inhibitory or high-frequency/excitatory rTMS targeting the left dorsolateral prefrontal cortex (DLPFC). With the brand-new submillimeter diffusion tensor imaging of whole brain and specialized surface-based laminar analysis, fractional anisotropy (FA) and mean diffusion (MD) profiles of cortical layers at different cortical depths were characterized before/after rTMS. Inhibitory and excitatory rTMS both showed impacts on diffusion metrics of somatosensory, limbic, and sensory regions, but different patterns of changes were observed-increased FA with inhibitory rTMS, whereas decreased FA with excitatory rTMS. More importantly, laminar analysis indicated laminar specificity of changes in somatosensory regions during different rTMS patterns-inhibitory rTMS affected the superficial layers contralateral to the DLPFC, while excitatory rTMS led to changes in the intermediate/deep layers bilateral to the DLPFC. These findings provide novel insights into acute neurobiological effects on diffusion profiles of rTMS that may add critical evidence relevant to different protocols of rTMS on neocortex.

7.
Quant Imaging Med Surg ; 12(7): 3692-3704, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35782262

RESUMEN

Background: Inflammation and hemodynamics are interrelated risk factors for intracranial aneurysm rupture. This study aimed to identify the relationship between these risk factors from an individual-patient perspective using biomarkers of aneurysm wall enhancement (AWE) derived from high-resolution magnetic resonance imaging (HR-MRI) and hemodynamic parameters by four-dimensional flow MRI (4D-flow MRI). Methods: A total of 29 patients with 29 unruptured intracranial aneurysms larger than 4 mm were included in this prospective cross-sectional study. A total of 24 aneurysms had AWE and 5 did not have AWE. A three-dimensional (3D) vessel model of each individual aneurysm was generated with 3D time-of-flight magnetic resonance angiography (3D TOF-MRA). Quantification of AWE was sampled with HR-MRI. Time-averaged wall shear stress (WSS) and oscillatory shear index (OSI) were calculated from the 4D-flow MRI. The correlation between spatial distribution of AWE and hemodynamic parameters measured at pixel-level was evaluated for each aneurysm. Results: In aneurysms with AWE, the spatial distribution of WSS was negatively correlated with AWE in 100% (24/24) of aneurysms, though 2 had an absolute value of the correlation coefficient <0.1. The OSI was positively correlated with AWE in 91.7% (22/24) of aneurysms; the other 2 aneurysms showed a negative correlation with AWE. In aneurysms with no AWE, there was no correlation between WSS (100%, 5/5), OSI (80%, 4/5), and wall inflammation. Conclusions: The spatial distribution of WSS was negatively correlated with AWE in aneurysms with AWE, and OSI was positively correlated with AWE in most aneurysms with AWE. While aneurysms that did not contain AWE showed no correlation between hemodynamics and wall inflammation.

8.
Quant Imaging Med Surg ; 11(2): 597-607, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33532260

RESUMEN

BACKGROUND: Previous studies have hypothesized that intracranial aneurysm (IA) morphology interacts with hemodynamic conditions. Magnetic resonance imaging (MRI) provides a single image modality solution for both morphological and hemodynamic measurements for IA. This study aimed to explore the interaction between the morphology and hemodynamics of IA using black-blood MRI (BB-MRI) and 4D flow MRI. METHODS: A total of 97 patients with unruptured IA were recruited for this study. The IA size, size ratio (SR), and minimum wall thickness (mWT) were measured using BB-MRI. Velocity, blood flow, pulsatility index (PI), and wall shear stress (WSS) were measured with 4D flow MRI. The relationship between hemodynamic parameters and morphological indices was investigated by linear regression analysis and unpaired two-sample t-test. To determine the independent interaction, multiple linear regression analysis was further performed. RESULTS: The findings showed that mWT was negatively correlated with IA size (r=-0.665, P<0.001). Maximum blood flow in IA (FlowIA) was positively correlated with IA size (r=0.458, P<0.001). The average WSS (WSSavg) was negatively correlated with IA size (r=-0.650, P<0.001). The relationships remained the same after the multivariate analysis was adjusted for hemodynamic, morphologic, and demographic confounding factors. The WSSavg was positively correlated with mWT (r=0.528, P<0.001). In the unpaired two-sample t-test, mWT, WSSavg, and FlowIA were statistically significantly associated with the size and SR of IAs. CONCLUSIONS: There is potential for BB-MRI and 4D flow MRI to provide morphological and hemodynamic information regarding IA. Blood flow, WSS, and mWT may serve as non-invasive biomarkers for IA assessments, and may contribute to a more comprehensive understanding of the mechanism of IA.

9.
Stroke Vasc Neurol ; 6(3): 467-475, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33637615

RESUMEN

BACKGROUND AND PURPOSE: Previous studies have reported about inflammation processes (IPs) that play important roles in aneurysm formation and rupture, which could be driven by blood flow. IPs can be identified using aneurysmal wall enhancement (AWE) on high-resolution black-blood MRI (BB-MRI) and blood flow haemodynamics can be demonstrated by four-dimensional-flow MRI (4D-flow MRI). Thus, this study investigated the associations between AWE and haemodynamics in unruptured intracranial aneurysms (IA) by combining 4D-flow MRI and high-resolution BB-MRI. MATERIALS AND METHODS: Between April 2014 and October 2017, 48 patients with 49 unruptured IA who underwent both 4D-flow MRI and high-resolution BB-MRI were retrospectively included in this study. The haemodynamic parameters demonstrated using 4D-flow MRI were compared between different AWE patterns using the Kruskal-Wallis test and ordinal regression. RESULTS: The results of Kruskal-Wallis test showed that the average wall shear stress in the IA (WSSavg-IA), maximum through-plane velocity in the adjacent parent artery, inflow jet patterns and the average vorticity in IA (vorticityavg-IA) were significantly associated with the AWE patterns. Ordinal regression analysis identified WSSavg-IA (p=0.002) and vorticityavg-IA (p=0.033) as independent predictors of AWE patterns. CONCLUSION: A low WSS and low average vorticity were independently associated with a high AWE grade for IAs larger than 4 mm. Therefore, WSS and average vorticity could predict AWE and circumferential AWE.


Asunto(s)
Aneurisma Intracraneal , Hemodinámica , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Estrés Mecánico
10.
Quant Imaging Med Surg ; 10(1): 269-282, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31956548

RESUMEN

BACKGROUND: Conventional reference multi-contrast black-blood (BB) MRI can be used for measuring luminal stenosis severity and plaque components, and its performance has been validated by intra- and inter-reader reproducibility test and histology. Recently, a set of 3D multi-contrast BB sequences have been developed, but its accuracy and reliability have not been well investigated. In this study, we evaluated the performance of 3D multi-contrast MRI (3D-MERGE, T2-VISTA, and SNAP) by comparing it with reference multi-contrast vessel wall MRI and assessing the inter-reader reproducibility. METHODS: In total, 27 patients were recruited in this study. Twenty-six participants underwent reference and 3D multi-contrast imaging in a 3.0T MR scanner. One participant underwent carotid endarterectomy (CEA) after 3D MR imaging. Two trained reviewers interpreted reference and 3D datasets. Lumen area (LA), wall area (WA), normalized wall index (NWI), maximum wall thickness (MaxWT), and mean wall thickness (MWT) were measured, and the presence of lipid-rich necrotic core (LRNC), intra-plaque hemorrhage (IPH) and calcification (CA) were identified. Inter-reader reproducibility of 3D interpretation was assessed. RESULTS: 3D imaging provided comparable measurements with reference imaging in LA (43.81±25.74 vs. 43.35±24.66 mm2) and MaxWT (1.65±1.33 vs. 1.62±1.10 mm), with a lower NWI (0.40±0.15 vs. 0.43±0.11), WA (29.40±21.92 vs. 30.64±16.17 mm2) and MWT (1.09±0.69 vs. 1.14±0.47), and showed good agreement for identification of LRNC (κ=0.66, 95% CI: 0.30-1.00) and CA (κ=0.69, 95% CI: 0.42-0.97), and excellent agreement for IPH (κ=1.00, 95% CI: 1.00-1.00). Inter-reader agreement of 3D analysis was good (LRNC, κ=0.87, 95% CI: 0.61-1.00; CA, κ=0.66, 95% CI: 0.36-0.96; IPH, κ=1.00, 95% CI: 1.00-1.00). CONCLUSIONS: 3D multi-contrast vessel wall imaging provides comparable performance in morphological measurements and identification of carotid plaque components as reference multi-contrast MRI, with good inter-reader reproducibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA