Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(6): 309, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714599

RESUMEN

Copper-doped carbon dots and aminated carbon nanotubes (Cu-CDs/NH2-CNTs) nanocomposites were synthesized by a one-step growth method, and the composites were characterized for their performance. An electrochemical sensor for sensitive detection of bisphenol A (BPA) was developed for using Cu-CDs/NH2-CNTs nanocomposites modified with glassy carbon electrodes (GCE). The sensor exhibited an excellent electrochemical response to BPA in 0.2 M PBS (pH 7.0) under optimally selected conditions. The linear range of the sensor for BPA detection was 0.5-160 µM, and the detection limit (S/N = 3) was 0.13 µM. Moreover, the sensor has good interference immunity, stability and reproducibility. In addition, the feasibility of the practical application of the sensor was demonstrated by the detection of BPA in bottled drinking water and Liu Yang River water.


Asunto(s)
Compuestos de Bencidrilo , Cobre , Técnicas Electroquímicas , Electrodos , Límite de Detección , Nanotubos de Carbono , Fenoles , Contaminantes Químicos del Agua , Compuestos de Bencidrilo/análisis , Fenoles/análisis , Fenoles/química , Nanotubos de Carbono/química , Cobre/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Contaminantes Químicos del Agua/análisis , Agua Potable/análisis , Puntos Cuánticos/química , Carbono/química , Ríos/química
2.
Biochem Biophys Res Commun ; 672: 185-192, 2023 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-37354612

RESUMEN

Abnormal function of injured muscle with innervation loss is a challenge in sports medicine. The difficulty of rehabilitation is regenerating and reconstructing the skeletal muscle tissue and the neuromuscular junction (NMJ). Platelet-rich plasma (PRP) releases various growth factors that may provide an appropriate niche for tissue regeneration. However, the specific mechanism of the PRP's efficacy on muscle healing remains unknown. In this study, we injected PRP with different concentration gradients (800, 1200, 1600 × 109 pl/L) or saline into a rat gastrocnemius laceration model. The results of histopathology and neuromyography show that PRP improved myofibers regeneration, facilitated electrophysiological recovery, and reduced fibrosis in a concentration-dependent manner. Furthermore, we found that PRP promotes the activity of satellite cells by upregulating the expression of the myogenic regulatory factor (MyoD, myogenin). Meanwhile, PRP promotes the regeneration and maturation of acetylcholine receptor (AChR) clusters of the Neuromuscular junction (NMJ) on the regenerative myofibers. Finally, we found that the expression of the Agrin, LRP4, and MuSK was upregulated in the PRP-treated groups, which may contribute to AChR cluster regeneration and functional recovery. The conclusions proposed a hypothesis for PRP treatment's efficacy and mechanism in muscle injuries, indicating promising application prospects.


Asunto(s)
Laceraciones , Enfermedades Musculares , Plasma Rico en Plaquetas , Ratas , Animales , Laceraciones/metabolismo , Laceraciones/patología , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Plasma Rico en Plaquetas/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo
3.
Bioorg Chem ; 122: 105718, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35255343

RESUMEN

The dreadful bacterial resistance to clinical drugs calls for the development of novel antibacterials. This work developed a class of unique metronidazole-derived three-component hybrids as promising antibacterial therapeutic alternatives. Bioactive assay discovered that p-chlorophenylhydrazone derivative 6b possessed excellent ability to suppress the growth of drug-resistant E. coli (MIC = 0.5 µg/mL), being 16 folds more potent than norfloxacin (MIC = 8 µg/mL). The active molecule 6b with imperceptible hemolysis could effectively retard the development of bacterial drug resistance within 30 passages. Moreover, compound 6b displayed a favorable inhibitory effect on E. coli biofilms and could act rapidly in bactericidal efficacy. Subsequent exploration of mechanism revealed that 6b could destruct the bacterial cytoplasmic membrane, leading to the leakage of intracellular protein. The inactivation of lactate dehydrogenase, metabolic stagnation and the accumulation of reactive oxygen species caused by 6b were observed. Furthermore, molecule 6b could form a supramolecular complex with DNA to obstruct DNA replication. These results demonstrated that metronidazole-derived three-component hybrids provided a large potential for deep development as prospective antibacterial agents.


Asunto(s)
Escherichia coli , Metronidazol , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Metronidazol/farmacología , Pruebas de Sensibilidad Microbiana , Estudios Prospectivos
4.
Bioorg Chem ; 124: 105855, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35576797

RESUMEN

A novel type of coumarin thiazoles as unique multi-targeting antimicrobial agents were developed through four steps including cyclization, nucleophilic substitution and condensation starting from commercial resorcine. Most of the prepared coumarin thiazoles displayed favorable inhibitory potency against the tested strains. Noticeably, methyl oxime V-a exerted potent inhibitory efficacy against methicillin-resistant Staphylococcus aureus (MRSA) at low concentration (1 µg/mL) and showed broad antimicrobial spectrum. Medicinal bioevaluations revealed that the active molecule V-a exhibited low toxicity toward mammalian cells, rapidly killing effect, good capability of eradicating MRSA biofilms and unobvious probability to engender drug resistance. Chemical biological methods were employed to investigate preliminary mechanism, which indicated that compound V-a was able to damage the integrity of membrane to trigger leakage of protein, insert into MRSA DNA to block its replication and induce the generation of reactive oxygen species (ROS) to inhibit bacterial growth. Computational study manifested that low HOMO-LUMO energy gap of molecule V-a was favorable to exert high antimicrobial activity.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas , Cumarinas/química , Cumarinas/farmacología , Mamíferos , Pruebas de Sensibilidad Microbiana , Esqueleto , Tiazoles/química , Tiazoles/farmacología
5.
Molecules ; 27(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500547

RESUMEN

The invasion of pathogenic fungi poses nonnegligible threats to the human health and agricultural industry. This work exploited a family of hydroxyethyl naphthalimides as novel antifungal species with synergistic potential of chemical and dynamic treatment to combat the fungal resistance. These prepared naphthalimides showed better antifungal potency than fluconazole towards some tested fungi including Aspergillus fumigatus, Candida tropicalis and Candida parapsilosis 22019. Especially, thioether benzimidazole derivative 7f with excellent anti-Candida tropicalis efficacy (MIC = 4 µg/mL) possessed low cytotoxicity, safe hemolysis level and less susceptibility to induce resistance. Biochemical interactions displayed that 7f could form a supramolecular complex with DNA to block DNA replication, and constitute a biosupermolecule with cytochrome P450 reductase (CPR) from Candida tropicalis to hinder CPR biological function. Additionally, 7f presented strong lipase affinity, which facilitated its permeation into cell membrane. Moreover, 7f with dynamic antifungal potency promoted the production and accumulation of reactive oxygen species (ROS) in cells, which destroyed the antioxidant defence system, led to oxidative stress with lipid peroxidation, loss of glutathione, membrane dysfunction and metabolic inactivation, and eventually caused cell death. The chemical and dynamic antifungal synergistic effect initiated by hydroxyethyl naphthalimides was a reasonable treatment window for prospective development.


Asunto(s)
Farmacorresistencia Fúngica , Naftalimidas , Humanos , Naftalimidas/farmacología , Estudios Prospectivos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Fluconazol/farmacología
6.
Plant Physiol ; 182(3): 1440-1453, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31937682

RESUMEN

Nitrate is the preferred form of nitrogen for most plants, acting both as a nutrient and a signaling molecule. However, the components and regulatory factors governing nitrate uptake in bread wheat (Triticum aestivum), one of the world's most important crop species, have remained unclear, largely due to the complexity of its hexaploid genome. Here, based on recently released whole-genome information for bread wheat, the high-affinity nitrate transporter2 (NRT2) and the nitrate-assimilation-related (NAR) gene family are characterized. We show that abscisic acid (ABA)- Glc ester deconjugation is stimulated in bread wheat roots by nitrate resupply following nitrate withdrawal, leading to enhanced root-tissue ABA accumulation, and that this enhancement, in turn, affects the expression of root-type NRT2/NAR genes. TaANR1 is shown to regulate nitrate-mediated ABA accumulation by directly activating TaBG1, while TaWabi5 is involved in ABA-mediated NO3 - induction of NRT2/NAR genes. Building on previous evidence establishing ABA involvement in the developmental response to high-nitrate stress, our study suggests that ABA also contributes to the optimization of nitrate uptake by regulating the expression of NRT2/NAR genes under limited nitrate supply, offering a new target for improvement of nitrate absorption in crops.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
7.
Bioorg Chem ; 113: 105039, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34091291

RESUMEN

A series of 2-aminothiazole sulfanilamide oximes were developed as new membrane active antibacterial agents to conquer the microbial infection. Benzoyl derivative 10c was preponderant for the treatment of drug-resistant A. baumannii infection in contrast to norfloxacin and exerted excellent biocompatibility against mammalian cells including erythrocyte and LO2 cell line. Meanwhile, it had ability to eradicate established biofilm to alleviate the resistance burden. Mechanism investigation elucidated that compound 10c was able to disturb the membrane effectively and inhibit lactic dehydrogenase, which led to cytoplasmic content leakage. The cellular redox homeostasis was interfered via the production of reactive oxygen and nitrogen species (RONS), which further contributed to respiratory pathway inactivation and reduction of GSH activity. This work indicated that 2-aminothiazole sulfanilamide oximes could be a promising start for the exploitation of novel antibacterial agents against pathogens.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Diseño de Fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Oximas/química , Acinetobacter baumannii/fisiología , Animales , Antibacterianos/química , Biopelículas/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Estrés Oxidativo/efectos de los fármacos , Oximas/farmacología , Relación Estructura-Actividad , Sulfanilamida/química , Tiazoles/química
8.
BMC Plant Biol ; 20(1): 236, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32456700

RESUMEN

BACKGROUND: Rice is a chilling-sensitive crop that would suffer serious damage from low temperatures. Overexpression of the Lsi1 gene (Lsi1-OX) in rice enhances its chilling tolerance. This study revealed that a serine hydroxymethyltransferase (OsSHMT) mainly localised in the endoplasmic reticulum (ER) is involved in increasing tolerance to chilling. RESULTS: A higher transcription level of OsSHMT was detected in Lsi1-OX rice than in the wild type. Histone H1 and nucleic acid binding protein were found to bind to the promoter region of OsSHMT and regulate its expression, and the transcription levels of these proteins were also up-regulated in the Lsi1-OX rice. Moreover, OsSHMT interacts with ATP synthase subunit α, heat shock protein Hsp70, mitochondrial substrate carrier family protein, ascorbate peroxidase 1 and ATP synthase subunit ß. Lsi1-encoded protein OsNIP2;1 also interacts with ATP synthase subunit ß, and the coordination of these proteins appears to function in reducing reactive oxygen species, as the H2O2 content of transgenic OsSHMT Arabidopsis thaliana was lower than that of the non-transgenic line under chilling treatment. CONCLUSIONS: Our results indicate that ER-localised OsSHMT plays a role in scavenging H2O2 to enhance the chilling tolerance of Lsi1-OX rice and that ATP synthase subunit ß is an intermediate junction between OsNIP2;1 and OsSHMT.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicina Hidroximetiltransferasa/genética , Peróxido de Hidrógeno/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Frío , Glicina Hidroximetiltransferasa/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo , Termotolerancia
9.
J Exp Bot ; 71(6): 2127-2141, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31811717

RESUMEN

Rice allelopathy is a natural method of weed control that is regarded as an eco-friendly practice in agroecology. The allelopathic potential of rice is regulated by various genes, including those that encode transcription factors. Our study characterized a MYB transcription factor, OsMYB57, to explore its role in the regulation of rice allelopathy. Increasing the expression of OsMYB57 in rice using the transcription activator VP64 resulted in increased inhibitory ratios against barnyardgrass. The gene expression levels of OsPAL, OsC4H, OsOMT, and OsCAD from the phenylpropanoid pathway were also up-regulated, and the content of l-phenylalanine increased. Chromatin immunoprecipitation incorporated with HiSeq demonstrated that OsMYB57 transcriptionally regulated a mitogen-activated protein kinase (OsMAPK11); in addition, OsMAPK11 interacted with OsPAL2;3. The expression of OsPAL2;3was higher in the allelopathic rice PI312777 than in the non-allelopathic rice Lemont, and OsPAL2;3 was negatively regulated by Whirly transcription factors. Moreover, microbes with weed-suppression potential, including Penicillium spp. and Bacillus spp., were assembled in the rhizosphere of the rice accession Kitaake with increased expression of OsMYB57, and were responsible for phenolic acid induction. Our findings suggest that OsMYB57 positively regulates rice allelopathy, providing an option for the improvement of rice allelopathic traits through genetic modification.


Asunto(s)
Echinochloa , Oryza , Alelopatía , Oryza/genética , Rizosfera
10.
Bioorg Chem ; 94: 103434, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812263

RESUMEN

In an effort for the development of novel antimicrobial agents, ethylenic conjugated coumarin thiazolidinediones as potential multi-targeting new antimicrobial compounds were synthesized through convenient procedures from commercially available resorcinol and were evaluated for their antimicrobial potency. Bioactive evaluation revealed that some of the prepared compounds showed strong antimicrobial activities towards the tested microorganisms including clinically drug-resistant strains. Especially, propargyl derivative 12b exhibited effective anti-MRSA potency with MIC value of 0.006 µmol/mL, which was highly advantageous over clinical antibacterial drug norfloxacin. Compound 12b showed rapid killing effect, low toxicity against hepatocyte LO2 cell line, and no obvious drug resistance development against MRSA. Preliminary exploration of action mechanism manifested that molecule 12b acted upon MRSA through forming stable supramolecular complex with bacterial DNA which might impede DNA replication. Molecular docking showed that compound 12b could bind with DNA-gyrase through hydrogen bonds.


Asunto(s)
Antibacterianos/farmacología , Cumarinas/farmacología , Etilenos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Tiazolidinedionas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Etilenos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Tiazolidinedionas/química
11.
Bioorg Med Chem Lett ; 29(15): 1943-1947, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31130266

RESUMEN

The G-quadruplex aptamer is a high-order structure formed by folding of guanine-rich DNA or RNA. The recognition and assembly of G-quadruplex and compounds are important to find biocompatible drugs. Herein, triphenylamine conjugated 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) compound (BPTPA) was synthesized, and the interaction of BPTPA with G4 DNA was studied. It is found that BPTPA selectively binds with G3T3 G4 DNA forming a water-compatible nanocomplex (BPTPA-G3T3). BPTPA-G3T3 can image mitochondria and inhibit the expression of TrxR2. Cytotoxicity results indicate BPTPA-G3T3 can decrease the membrane potential of mitochondria and inhibit the proliferation of BGC-823 cancer cells. Therefore, BPTPA-G3T3 can be the biocompatible attenuator of mitochondria for cancer image and chemotherapy.


Asunto(s)
G-Cuádruplex , Mitocondrias/metabolismo , Humanos , Estructura Molecular
12.
Nanomedicine ; 21: 102040, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31228602

RESUMEN

Distraction osteogenesis (DO) represents an effective but undesirably lengthy treatment for large bone defects. Both magnetic nanoparticles and silicon have been shown to induce osteogenic differentiation of mesenchymal stem cells (MSCs), the key participant in bone regeneration. We herein synthesized mesoporous silica coated magnetic (Fe3O4) nanoparticles (M-MSNs) and evaluated its potential for acceleration of bone regeneration in a rat DO model. The M-MSNs exhibited good biocompatibility and remarkable capability in promoting the osteogenic differentiation of MSCs via the canonical Wnt/ß-catenin pathway in vitro. More importantly, local injection of M-MSNs dramatically accelerated bone regeneration in a rat DO model according to the results of X-ray imaging, micro-CT, mechanical testing, histological examination, and immunochemical analysis. This study demonstrates the notable potential of M-MSNs in promoting bone regeneration during DO by enhancing the osteogenic differentiation of MSCs, paving the way for clinical translation of M-MSNs in DO to repair large bone defects.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Nanopartículas de Magnetita/química , Osteogénesis por Distracción , Dióxido de Silicio/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Modelos Animales de Enfermedad , Humanos , Nanopartículas de Magnetita/administración & dosificación , Osteogénesis/efectos de los fármacos , Porosidad , Ratas , Dióxido de Silicio/química , Vía de Señalización Wnt/efectos de los fármacos
13.
J Pept Sci ; 24(4-5): e3077, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29582508

RESUMEN

A cyclic peptide CC9 that targets cell membrane of mesenchymal stem cells (MSCs) is coupled with Gd-DOTA to yield a Gd-DOTA-CC9 complex as MRI contrast agent. It is used to label human MSCs (hMSCs) via electroporation. Electroporation-labeling of hMSCs with Gd-DOTA-CC9 induces cell-assembly of Gd-DOTA-CC9 nanoclusters in the cytoplasm, significantly promotes cell-labeling efficacy and intracellular retention time of the agent. In vitro MRI of labeled hMSCs exhibits significant signal reduction under T2 -weighted MRI, which can allow long-term tracking of labeled cell transplants in in vivo migration. The labeling strategy is safe in cytotoxicity and differentiation potential.


Asunto(s)
Rastreo Celular/métodos , Compuestos Heterocíclicos/química , Células Madre Mesenquimatosas/citología , Compuestos Organometálicos/química , Péptidos Cíclicos/síntesis química , Células Cultivadas , Medios de Contraste , Citoplasma/química , Electroporación , Humanos , Imagen por Resonancia Magnética , Células Madre Mesenquimatosas/química , Péptidos Cíclicos/química , Coloración y Etiquetado
14.
Phys Chem Chem Phys ; 20(6): 4118-4128, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29355253

RESUMEN

The conventional paradigm for characterizing surface overcharging and charge reversal is based on the so-called Stern layer, in which surface dissociation reaction and specific chemical adsorption are assumed to take place. In this article, a series of Monte Carlo simulations have been applied to obtain useful insights into the underlying physics responsible for these two kinds of anomalous phenomena at the interface of two dielectrics, with special emphasis on the case of divalent counterions that are more relevant in natural and biological environments. At a weakly charged surface, it is found that independent of the type of surface charge distribution and the dielectric response of the solution, the overcharging event is universally driven by the ion size-asymmetric effect. Exceptionally, the overcharging still persists when the surface is highly charged but is only restricted to the case of discrete surface charge in a relatively low dielectric medium. As compared to the adsorption onto the homogeneously smeared charge surface that has the same average affinity for counterions, on the other hand, charge reversal under the action of a dielectric response can be substantially enhanced in the discrete surface charge representation due to strong association of counterions with interfacial groups, and the degree of enhancement depends in a nontrivial way on the reduction of the medium dielectric constant and the steric effects of finite ion size. Rather interestingly, the charge reversal is of high relevance to the overcharging of interfaces because the overwhelming interfacial association forces the coions closer to the surface due to their smaller size than the counterions. Upon the addition of a monovalent salt to the solution, the interfacial association with divalent counterions makes surface overcharging and charge reversal widely unaffected, in contrast to the prevailing notion that screening of surface charge of a homogeneous nature is determined by the competitive effects between size-exclusion effects and energetic contributions. Overall, the present work highlights that the complex interplay between the electrostatic and steric interactions should be coupled to the realistic character of surface charge to establish a faithful description of the overcharging and charge reversal at heterophase interfaces.

15.
Adv Mater ; : e2313495, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683961

RESUMEN

Underwater adhesives hold significant relevance in daily life and numerous industrial applications. Despite considerable efforts, developing scalable, high-performance underwater adhesives through a simple and effective method remains a formidable challenge. This study presents a novel mesh-tailoring strategy for in situ, rapid, and ultrastrong oleogel-based underwater adhesives (OUA), which comprises a highly crosslinked polyurethane network with a matching mesh size (≈2.22 nm) that precisely entraps bio-based epoxidized soybean oil (ESO) molecules (≈2.31 nm) by steric hindrance effect. This oleogel exhibits unprecedented robust mechanical properties (≈35 MPa) and maintains stability under extreme conditions, including high temperatures (100 °C), high pressures (30 MPa), and immersion in various solvents (water, ethanol, or ESO). In particular, this oleogel displays high hydrophobicity, rapid curing, and strong interface affinity, resulting in ultrahigh underwater adhesion strength (up to 2.13 MPa) and exceptional substrate universality. Moreover, the remarkable environmental adaptability and stability of OUA enable its use in harsh aqueous environments, including acidic/alkaline, saline, and extreme temperature solutions. The comprehensive capabilities of the OUA underscore its potential for building underwater structures, repairing leaky containers, and sealing broken submarine pipelines. This research establishes the foundation for the designing of next-generation underwater adhesives and offers fresh perspectives for exploring oleogel-based materials.

16.
J Med Chem ; 67(11): 8932-8961, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38814290

RESUMEN

This study developed a class of novel structural antifungal hydrazylnaphthalimidols (HNs) with multitargeting broad-spectrum potential via multicomponent hybridization to confront increasingly severe fungal invasion. Some prepared HNs exhibited considerable antifungal potency; especially nitrofuryl HN 4a (MIC = 0.001 mM) exhibited a potent antifungal activity against Candida albicans, which is 13-fold higher than that of fluconazole. Furthermore, nitrofuryl HN 4a displayed low cytotoxicity, hemolysis and resistance, as well as a rapid fungicidal efficacy. Preliminary mechanistic investigations revealed that nitrofuryl HN 4a could inhibit lactate dehydrogenase to decrease metabolic activity and promote the accumulation of reactive oxygen species, leading to oxidative stress. Moreover, nitrofuryl HN 4a did not exhibit membrane-targeting ability; it could embed into DNA to block DNA replication but could not cleave DNA. These findings implied that HNs are promising as novel structural scaffolds of potential multitargeting broad-spectrum antifungal candidates for treating fungal infection.


Asunto(s)
Antifúngicos , Candida albicans , Pruebas de Sensibilidad Microbiana , Animales , Humanos , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Candida albicans/efectos de los fármacos , Hemólisis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Naftalenos/síntesis química , Naftalenos/química , Naftalenos/farmacología , Hidrazinas/síntesis química , Hidrazinas/química , Hidrazinas/farmacología
17.
ACS Appl Mater Interfaces ; 15(4): 5998-6004, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36683575

RESUMEN

Flexible hard coatings with strong adhesion are critical requirements for several foldable devices and marine applications; however, only a few such coatings have been reported. Herein, we report a non-isocyanate polyurethane (NIPU) coating prepared by the epoxy-oligosiloxane nanocluster-amine curing reaction and cyclic carbonate-amine polyaddition, where the former provides the coating with ceramic-like hardness and polymer-like flexibility while the latter polymerization results in NIPU with strong substrate adhesion. The coating is transparent (>92% transmittance), hard (5-7 H), and flexible (2 mm bending diameter). It has strong adhesion to various substrates including aluminum alloy, titanium, steel, glass, ceramic, epoxy, and polyethylene terephthalate (2-8 MPa), which can be attributed to the high density of polar groups in NIPU. Moreover, we can facilely endow the coating with anti-icing, self-cleaning, and anti-smudge capabilities by incorporating amine-terminated low-surface-tension polydimethylsiloxane (PDMS) to replace a part of the amine curing agent. Particularly, the mechanical properties of NIPU coatings are only slightly affected by the introduction of low-content PDMS since it intends to enrich on the surface. The novel coating has promising future for use in fields of foldable devices and marine applications.

18.
World J Gastrointest Endosc ; 15(12): 735-744, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38187911

RESUMEN

BACKGROUND: Accurate diagnosis of Helicobacter pylori (H. pylori) infection status is a crucial premise for eradication therapy, as well as evaluation of risk for gastric cancer. Recent progress on imaging enhancement endoscopy (IEE) made it possible to not only detect precancerous lesions and early gastrointestinal cancers but also to predict H. pylori infection in real time. As a novel IEE modality, linked color imaging (LCI) has exhibited its value on diagnosis of lesions of gastric mucosa through emphasizing minor differences of color tone. AIM: To compare the efficacy of LCI for H. pylori active infection vs conventional white light imaging (WLI). METHODS: PubMed, Embase, Embase and Cochrane Library were searched up to the end of April 11, 2022. The random-effects model was adopted to calculate the diagnostic efficacy of LCI and WLI. The calculation of sensitivity, specificity, and likelihood ratios were performed; symmetric receiver operator characteristic (SROC) curves and the areas under the SROC curves were computed. Quality of the included studies was chosen to assess using the quality assessment of diagnostic accuracy studies-2 tool. RESULTS: Seven original studies were included in this study. The pooled sensitivity, specificity, positive likelihood rate, and negative likelihood rate of LCI for the diagnosis of H. pylori infection of gastric mucosa were 0.85 [95% confidence interval (CI): 0.76-0.92], 0.82 (95%CI: 0.78-0.85), 4.71 (95%CI: 3.7-5.9), and 0.18 (95%CI: 0.10-0.31) respectively, with diagnostic odds ratio = 26 (95%CI: 13-52), SROC = 0.87 (95%CI: 0.84-0.90), which showed superiority of diagnostic efficacy compared to WLI. CONCLUSION: Our results showed LCI can improve efficacy of diagnosis on H. pylori infection, which represents a useful endoscopic evaluation modality for clinical practice.

19.
J Agric Food Chem ; 71(13): 5107-5116, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36947168

RESUMEN

The existing agricultural insecticides have developed drug resistance from long-term use. Isoxazoline derivatives are new insecticides discovered in the 21st century. Because of their unique insecticidal mechanism, high selectivity, safety, and no significant cross resistance with the existing pesticides on the market, they have become a hot spot in the field of pesticide research. Herein, a series of novel isoxazoline derivatives containing ether and oxime-ether structures were designed and synthesized by a scaffold-hopping strategy using the pesticide fluralaner as a template structure. Through the investigation of insecticidal activity and the systematic structure-activity relationship, a series of compounds with high insecticidal activities were found, and compounds I-4, II-9, and II-13 with LC50 values of 0.00008-0.00036 mg/L against diamondback moth emerged as novel insecticide candidates. These compounds also exhibited broad spectrum fungicidal activities against 14 plant fungi. The current work provides a reference for the design of new isoxazoline compounds based on the scaffold-hopping strategy.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Plaguicidas , Animales , Insecticidas/química , Éter , Oximas/farmacología , Oximas/química , Relación Estructura-Actividad , Plaguicidas/química , Éteres/farmacología , Éteres/química , Éteres de Etila , Estructura Molecular , Diseño de Fármacos
20.
Zhongguo Gu Shang ; 35(5): 464-9, 2022 May 25.
Artículo en Zh | MEDLINE | ID: mdl-35535536

RESUMEN

OBJECTIVE: To investigate the effect of intra-articular berberine injection on the structural remodeling of subchondral bone plate and osteoprotegerin/receptor activator of nuclear factor kappa-B ligand(OPG/RANKL) system expression in rabbits with osteoarthritis(OA). METHODS: Forty 12-month-old male rabbits with an average of(2.73±0.18) kg of body weight, underwent left anterior cruciate ligament transection(ACLT), and were divided into berberine group and placebo groups after operation, 20 rabbits in each group. The berberine group received intra-articular injection of 100 µmol/L berberine 0.3 ml every week for 6 weeks. In placebo group, the same dose of 0.9% sodium chloride injection was injected into the left knee joint cavity every week for 6 weeks. Another 20 12-month-old male rabbits, weighing (2.68±0.18) kg, underwent sham operation on the left knee joint without intra-articular injection intervention (sham operation group). On the last day of the sixth week after operation, three groups of animals were sacrificed to obtain knee joint specimens. The femoral medial condyle samples were obtained for histological evaluation of cartilage and subchondral bone, Mankin scoring system was used to evaluate articular cartilage structure. Image-Pro Plus(IPP) software was used to evaluate subchondral bone plate bone volume(BV), bone volume/total volume(BV/TV), trabecular circumference(TC), mean trabecular thickness (Tb.Th). Real-time quantitative reverse transcription polymerization Enzyme chain reaction(reverse transcription-polymerase chain reaction, RT-PCR) was used to detect the mRNA expression levels of OPG and RANKL in subchondral bone tissue at 6 weeks after operation. RESULTS: The cartilage structure evaluation showed that the surface of cartilage tissue in the sham operation group was smooth and flat, and the safranin coloration was full in the full thickness of the cartilage;the cartilage tissue in the berberine group showed uneven surface layer, and the staining of safranin O was mildly decreased;the surface layer fibrosis was seen in placebo group, Safranin O faded significantly. The Mankin score in the berberine group was lower than that in placebo group(P<0.01), but higher than that in sham operation group(P<0.01). The structural evaluation of subchondral bone plate showed that the trabecular bone in sham-operated group was densely arranged;after berberine intervention, the trabeculae were closely arranged;the subchondral bone trabeculae in placebo group were relatively sparse, and the distance between trabeculae was wider. Subchondral bone plate IPP software evaluation showed that BV, BV/TV, TC, Tb.Th in berberine group were higher than those in placebo group(P<0.01), BV, BV/TV, TC, Tb.Th in berberine group were higher than those in placebo group(P<0.01), while lower than the sham operation group (P<0.01). PCR test results showed that the expression of OPG mRNA in the berberine group was significantly higher than that in placebo group(P<0.01), and OPG mRNA in the berberine group was lower than that in sham operation group (P<0.01). There was no significant difference in mRNA expression of RANKL among three groups(P>0.05);the ratio of OPG/RANKL in berberine group was higher than that in placebo group(P<0.01), but lower than that in sham operation group(P<0.01). CONCLUSION: Intra-articular injection of berberine can effectively inhibit the resorption of subchondral bone in the early stage of OA and delay the development of the disease. The specific mechanism may be that berberine maintains the balance of OPG/RANKL system by up-regulating the expression of OPG gene in subchondral bone.


Asunto(s)
Berberina , Conservadores de la Densidad Ósea , Cartílago Articular , Osteoartritis , Animales , Masculino , Conejos , Berberina/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Conservadores de la Densidad Ósea/uso terapéutico , Placas Óseas , Ligandos , FN-kappa B/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , ARN Mensajero/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA